AE 721 Aerospace Design Laboratory I Missile Design I

Dr. Ron Barrett-Gonzalez (a.k.a. Dr. B.) Professor of Aerospace Engineering

2124 Learned Hall The University of Kansas adaptivebarrett@gmail.com (785) 856-9969 (home) (785) 864-2226 (office) (785) 760-4614 (cell)

Monday 9 October

Unclassified Rev. 22 August 2023

Today's Schedule:

- Call roll
- Report 4
- Reading Assignment: Chapter 2 Fleeman
- Fleeman
- Reverse Engineering Methods
- Proverse Engineering of RAIDERs

AE 721 Report Scores

AE 721 Quiz Team Rosters

Student	Team
Dargahi,Alex	1
Deng,Keyu	1
Junnare, Nupoor	1
Shah,Dhairya	1
Thorson, Johnathan A	1
Barland, Jack A	2
Dillon,Peter	2
Dodge,Andrew	2
Guzman, Jonathan Alan	2
Mistretta, Anthony J	2
Svoboda, Benjamin C	2
Horst,Evelyn	3
Hunt,Wesley Afra	3
King,Kathryn M	3
Mcmichael, Barrett	3
Waggoner, Alex	3
Wegiel, Jeremy L	3

Student	Team
Braaten, Niels C	6
Dutta,Sap	6
Larsen, Isaac	6
Platt,Charlie M	6
Wall,James Edgar	6
Foster, Dean C	7
Heide,Rhett Gile	7
Marshall, Jeb O	7
Olson,Kadin Lee	7
Russell,Lucas S	7
Ativie,Joseph	8
Kuligowski,Payton M	8
Poznanski, Joshua	8
Richardson, Jake	8
Schneider, Cade W	8
Torres Leon, Hector	8

Chapter 2: Aerodynamics

TVC and Reaction Jet Flight Control Provide High Maneuverability at Low Dynamic Pressure

Chapter 2: Aerodynamics Most Missiles with TVC or Reaction Jet Flight Control Also Use Aerodynamic Flight Control

Chapter 2: Aerodynamics

Skid-to-Turn is the Most Common Maneuver Law for Missiles

Skid-To-Turn (STT)

- Advantage ^(C): Fast response
- Disadvantage (8): Usually limited to axisymmetric cruciform missiles with low aspect ratio
- Feature:
 - Usually small roll attitude / rate commands from autopilot

Bank-To-Turn (BTT)

- Advantage ^(C): Higher maneuverability for mono-wing, noncircular / lifting bodies, and airbreathers
- Disadvantages (8):
 - Time to roll
 - Roll rate limited by gain for radome error slope stability
- Features
 - Large roll attitude commands from autopilot
 - Small sideslip

Note: LOS is line-of-sight

Aerospace Design

Chapter 2: Aerodynamics

Skid-to-Turn is the Most Common Maneuver Law for Missiles (cont)

Rolling Airframe (RA)

- Advantages ^(C):
 - Requires fewer gyros / accelerometers / actuators
 - Compatible with rosette scan / pseudo Image seeker
- Disadvantages (8):
 - Reduced maneuverability for aero control
 - Requires higher rate gyros / actuators / seeker tracking
 - Higher drag with coning flight trajectory
 - Requires precision geometry and thrust alignment
 - Induces radial stress
 - Thrust varies with roll rate
- Features
 - Bias roll rate (~10 Hz) from bias roll moment
 - Can use "bang-bang" / impulse steering
 - Compensates for thrust offset

Divert

- Advantages ⁽³⁾:
 - Lower time constant
 - Less effect of radome error slope
 - Often has smaller miss distance
- Disadvantages 8:
 - Usually higher cost
 - May not provide sufficient maneuverability
- Features
 - Direct lift / side force w/o rotation
 - Either wing, blended canard tail, or divert reaction jet control

Aerospace Design

Chapter 2: Aerodynamics Examples of Skid-to-Turn, Bank-to-Turn, Rolling Airframe, and Divert Maneuvering

Non-Cruciform Inlets Require Bank-to-Turn Maneuvering

Type Inlet	Location	Propulsion	Example Missile
Twin	Side	Ramjet	ASMP
8	"	"	C-101 C-301
"	"	Turbojet	Taurus KEPD-350
"	Cheek	Ducted Rocket	HSAD Meteor
Single	Bottom Scoop	Scramjet	X-51 SED
63	"	Ramjet	ASALM
63	**	Turbojet	Tomahawk RBS-15 SOM C

Note: Bank-to-turn maneuvering maintains low sideslip ($\beta\approx$ 0 deg) with better inlet efficiency

Unclassified Rev. 22 August 2023

Non-Cruciform Inlets Require Bank-to-Turn Maneuvering (cont)

Copyright © R. M. Barrett, E. Fleeman 2023 All rights reserv

Unclassified Rev. 22 August 2023

Typical Sign Convention for Cruciform Missile Roll Angle and Flight Control Surface Deflection

+ ϕ looking forward from base

 $\begin{array}{c|c}
\delta_{4} \\
\hline
Fin A \\
\hline
Fin 1 \\
\hline
Fin 2 \\
\hline
\delta_{2} \\
\hline
y \\
\hline
\delta_{3} \\
\hline
z \\
\hline
\end{array}$

Fins 1 and 3 have trailing edge right for + deflection Fins 2 and 4 have trailing edge up for + deflection In above figure Fins 1 and 2 have + deflection

$$\begin{split} \delta_{e} &= \text{Equivalent elevator deflection (} + \delta_{e} \text{ produces + (up) pitching moment)} = [(\delta_{2} + \delta_{4})/2] \cos \varphi - [(\delta_{1} + \delta_{3})/2] \sin \varphi \\ \delta_{r} &= \text{Equivalent rudder deflection (} + \delta_{r} \text{ produces + (right) yawing moment)} = [(\delta_{2} + \delta_{4})/2] \sin \varphi + [(\delta_{1} + \delta_{3})/2] \cos \varphi \\ \delta_{a} &= \text{Equivalent aileron deflection (} + \delta_{a} \text{ produces + (clockwise) rolling moment)} = (\delta_{2} + \delta_{3} - \delta_{1} - \delta_{4})/4 \end{split}$$

Note: For minimum total fin deflection (\Rightarrow lowest total hinge moment, lowest drag, highest control effectiveness): $\delta_1 = \delta_r - \delta_a, \ \delta_2 = \delta_e + \delta_a, \ \delta_3 = \delta_r + \delta_a, \ \delta_4 = \delta_e - \delta_a$

© R. M. Barrett,

Copyright

Aerospace Design

Chapter 2: Aerodynamics

X Roll Orientation Flight is Usually Better Than + Roll Orientation Flight

+ Roll Orientation ($\varphi = 0 \text{ deg}$), Cruciform Tail Control, Looking Forward from Base

X Roll Orientation (ϕ = 45 deg), Cruciform Tail Control, Looking Forward from Base

Note: + roll orientation sometimes has lower trim drag and less static stability and control effectiveness in pitch and yaw. + roll often has statically unstable roll moment derivative ($C_{l_{\phi}} > 0$) in supersonic flight.

X roll orientation usually has better launch platform compatibility, higher lift-to-drag ratio, higher static stability and control effectiveness in pitch and yaw. X roll often has statically unstable roll moment derivative ($C_{l\phi} > 0$) in subsonic flight.

Trimmed Normal Force is Defined at Zero Pitching Moment

Aerospace Design

Chapter 2: Aerodynamics

Relaxed Static Stability Margin Allows Higher Trim Angle of Attack and Higher Normal Force

Unclassified Rev. 22 August 2023

Chapter 2: Aerodynamics Relaxed Static Stability Margin Reduces Drag

.SM = Static Margin = Distance Between Aerodynamic Center and Center of Gravity (x_{AC} - x_{CG})

Aerospace Design

Chapter 2: Aerodynamics Neutral Stability Tail Area with Mach

Chapter 2: Aerodynamics

Missile Static Margin is Driven by Tail Area and Static Margin Predicition Has Large Uncertainty

Unclassified Rev. 22 August 2023

Stability & Control Requires High Flight Control Effectiveness

Small Roll from $\delta_r \Rightarrow |C_{l_{\delta_r}} / C_{l_{\delta_a}}| < 0.3$

Small Roll from $\phi \Rightarrow |C_{l_{\phi}} / C_{l_{\delta_a}}| < 0.5$

Small Roll from $\beta \Rightarrow |C_{l_{\beta}} / C_{l_{\delta_a}}| < 0.3$

Small Yaw from $\delta_a \Rightarrow |C_{n\delta_a} / C_{n\delta_r}| < 0.2$

High Yaw Control ⇒ | C_{nδr} > C_{nβ} |

Aerospace Design

Chapter 2: Aerodynamics

Stabilty & Control Cross Coupling is a Concern for Lifting Bodies (S&C Cross Coupling Often > 30%)

M2-F2 Lifting Body

X-24B Lifting Body

https://www.youtube.com/watch?v=QtO5eO9GqtM https://www.youtube.com/watch?v=50dDWT48b9M

Unclassified Rev. 22 August 2023

Wednesday 11 October

Unclassified Rev. 22 August 2023

Today's Schedule:

- Call roll
- Winners' Prizes for last quiz
- Florida Trip Classes
- Symposium Attendance & Meals
- Reverse Engineering Methods
- Proverse Engineering of RAIDERs

Aerospace Design

Winners' Treasure!

	AE 721 Field Trip to Air Armament Symposium November 2023	Conflicting Classes	Not Going	Maybe Going	Going
1	Ativie, Joseph	?			Х
2	Barland, Jack A	?			Х
3	Bo Xu	?			Х
4	Braaten,Niels C	?			Х
5	Dillon,Peter	?			Х
6	Dutta,Sap	?			Х
7	Evelyn Horst	?			Х
8	Foster, Dean C	?			Х
9	Gerell Miller	?			Х
10	Guzman, Jonathan Alan	?			Х
11	Heide,Rhett Gile	?			Х
12	Hunt,Wesley Afra	?			Х
13	Jeremy Wegiel	?			Х
14	Justin Clough	?			Х
15	King,Kathryn M	?			Х
16	Kuligowski,Payton M	?			Х
17	Larsen, Isaac	?			Х
18	Marshall, Jeb O	?			Х
19	Mcmichael,Barrett	?			Х
20	Olson,Kadin Lee	?			Х
21	Platt,Charlie M	?			Х
22	Poznanski, Joshua	?			Х
23	Richardson, Jake	?			Х
24	Schneider,Cade W	?			Х
25	Shanya Dorsey	?			Х
26	Svoboda,Benjamin C	?			Х
27	Waggoner,Alex	?			Х
28	Wall,James Edgar	?			Х
29	Dargahi,Alex			Х	
30	Deng,Keyu			Х	
31	Dodge,Andrew			Х	
32	Junnare,Nupoor			Х	
33	Mistretta, Anthony J		Х		
34	Olivia Caudillo		Х		
35	Russell,Lucas S		Х		
36	Shah,Dhairya			Х	
37	Thorson, Johnathan A		х		

Improved Weapon Design with RAIDER Powerplant Configurations

Reverse Engineering of Baseline Missiles & Proverse Engineering of RAIDER Missiles

Improved Weapon Design with RAIDER Powerplant Configurations

1. Reverse Engineering

- 1.1 Get baseline missile data
- 1.2 Construct design Mission Profile
- 1.3 Assemble Payload-Range Diagram
- 1.4 Get Weight of Propellant
- 1.5 Approximate I_{sp} & TSFC
- 1.6 Estimate Time of Flight (TOF) with live engine
- 1.7 Update Mission Profile with derived values
- 1.8 Solve for mission L/D values
- 1.9 Solve for W_e/W_{launch}
- 1.10 Solve for Lift & Drag expressions with Mach
- 1.11 Solve for Mach and α at L/D Cruise
- 1.12 Solve for $C_{\text{Lcruise}},$ L/D_{\text{cruise}} and α_{cruise}
- 1.13 Solve for cruise mid-point air density
- 1.14 Find mid-cruise point altitude for standard atmosphere
- 1.15 Update Mission Profile to include mid-point cruise details

General Performance -- Reverse Engineering

Step 1 Get as much general information as possible

Air-to-Air Missile AIM-120 Example:

(from public sources) https://www.designation-systems.net/dusrm/m-120.html

	AIM-120A/B	AIM-120C-5
Length	3.66 m (12 ft)	
Wingspan	53.3 cm (21 in)	44.7 cm (17.6 in)
Finspan	63.5 cm (25 in)	44.7 cm (17.6 in)
Diameter	17.8 cm (7 in)	
Weight	157 kg (345 lb)	
Speed	Mach 4	
Range	50-70 km (30-45 miles)	> 105 km (65 miles)
Propulsion	Hercules/Aerojet solid-fueled rocket	
Warhead	23 kg (50 lb) WDU-33/B blast-fragmentation	18 kg (40 lb) WDU-41/B blast-fragmentation
Max. Thrust	3,700lbf	

Aerospace Design

General Performance -- Reverse Engineering

Step 2 Construct Mission Profile

Aerospace Design

General Performance -- Reverse Engineering

Step 2 Construct Mission Profile

Aerospace Design

General Performance -- Reverse Engineering

Step 2 Construct Mission Profile

General Performance -- Reverse Engineering

Step 4 Get Approximate Weight of Propellant

General Performance -- Reverse Engineering

Step 4 Get Approximate Weight of Propellant

Aerospace Design

General Performance -- Reverse Engineering

Step 5 Get Approximate Specific Impulse of Propellant & Convert

Aerospace Design

General Performance -- Reverse Engineering Step 6 Estimate Time of Flight (TOF) with Live Engine @ Max. Thrust

$$TSFC = C_j = \frac{\dot{W_f}}{T} = \frac{\Delta W_f}{T\Delta t} = 13.6 \frac{lbf}{lbf - hr}$$

$$\Delta t = \frac{\Delta W_f}{T_{13.6} \frac{lbf}{lbf - hr}} = \frac{110 lbf}{3,700 lbf_{13.6} \frac{lbf}{lbf - hr}} = 0.00219 hr \frac{3,600s}{hr} = 7.9 sec$$

$$\dot{W_f}_{max thrust} = \frac{110lb}{7.9s} = 13.9 \frac{lbf}{s}$$

General Performance -- Reverse Engineering

Step 7 Update the Mission Profile with Derived Values

ft/s*5.46s = 15,856ft = 3mi

General Performance -- Reverse Engineering

Step 7 Update the Mission Profile with Derived Values

General Performance -- Reverse Engineering

Step 7 Update the Mission Profile with Derived Values

$$W_{fdashA/B} = 110lbf - 5.46s*13.9lbf/s = 34lbf W_{fdashC} = 120lbf - 5.46s*13.9lbf/s = 44lbf$$

General Performance -- Reverse Engineering

Step 7 Update the Mission Profile with Derived Values

 $W_{fdashA/B} = 110lbf - 5.46s*13.9lbf/s = 34lbf$ $W_{fdashC} = 120lbf - 5.46s*13.9lbf/s = 44lbf$

$$T_{dashA/B} = \frac{\dot{W_{f}}_{dash}}{C_{j}} = I_{sp} \dot{W_{f}}_{dash} = 265s \frac{34lbf}{57s} = 158lbf$$
$$T_{dashC} = \frac{\dot{W_{f}}_{dash}}{C_{j}} = I_{sp} \dot{W_{f}}_{dash} = 265s \frac{44lbf}{85s} = 137lbf$$

pyright © R. M. Barrett, E. Fleeman 2023 All rights reserve

Aerospace Design

General Performance -- Reverse Engineering

Step 8 Solve for L/D's

43

Recall that for jets (which also goes for rockets & missiles): But... Things are much simpler for air-to-air missiles...

$$R(nmi) = \left(\frac{V(kts)}{C_j \binom{lbf}{lbf-hr}}\right) \binom{L}{D} \operatorname{Ln}\left(\frac{W_i}{W_{i+1}}\right)$$

Assume that induced drag ~ 0, wave drag dominates

For acceleration leg: T = D_{aero} + D_{D'Alembert's} ~ D_{D'Alembert's}

So from dash segment: $L/D \sim W/D = W_{dash}/T_{dash}$

 $L/D_{A/B} \sim ((3451b - 34/21bf)/1581bf = 2.08$

 L/D_{c} ~ ((3451b - 44/21bf)/1371bf = 2.35

Contemplate the ways to get a 13% boost in L/D...

Unclassified Rev. 22 August 2023

-4

Unclassified Rev. 22 August 2023

Friday 13 October

Unclassified Rev. 22 August 2023

47

Today's Schedule:

- Call roll
- Reverse Engineering Methods
- Proverse Engineering of RAIDERs
- Report 6
- Quiz

General Performance -- Reverse Engineering Missiles

Step 9 Solve for W_e/W_{launch}:

 $W_e/W_{launchA/B} = (W_{launch} - W_{warhead} - W_{propellant})/W_{launch} = (345 - 50 - 110lb)/345lb = 54\%$

 $W_e/W_{launchA/B} = (W_{launch} - W_{warhead} - W_{propellant})/W_{launch} = (345 - 40 - 120lb)/345lb = 54\%$

Aerospace Design

General Performance -- Reverse Engineering Missiles

Step 10 Solve for C_L & C_A with Mach and α :

Recall:

 $C_{L}(\alpha, M) = C_{N}(\alpha, M)Cos\alpha - C_{A}(\alpha, M)Sin\alpha$

 $C_D(\alpha, M) = C_N(\alpha, M)Sin\alpha + C_A(\alpha, M)Cos\alpha$

Rearranging:

$$C_A(\alpha, M) = \frac{C_D(\alpha, M) - C_N(\alpha, M)Sin\alpha}{Cos\alpha}$$

Substituting:

$$C_{L}(\alpha, M) = C_{N}(\alpha, M)Cos\alpha - \frac{C_{D}(\alpha, M) - C_{N}(\alpha, M)Sin\alpha}{Cos\alpha}Sin\alpha$$

Plot C_N, C_L, C_A, C_D & L/D for each relevant Mach number

General Performance -- Reverse Engineering Ballistics

Steps 1 – 5 Get all Engineering-Level Data as done for missiles

Step 6 Get TOF, (t) and ranges, R, apogee, h for baseline missile system

Step 7 Consider a dragless launch with unknown muzzle velocity, V_m

General Performance -- Reverse Engineering Ballistics

Step 8 Gather range-altitude info. for baseline

Knowns: R, t(sometimes), h(sometimes)

Unknowns: γ , V_m, t(sometimes), h(sometimes)

Boeing/Nammo

Aerospace Design

General Performance -- Reverse Engineering Ballistics

Step 9 If h_{max} known, solve for V_{ym} :

$$V_{ym} = \sqrt{2g(h_{max} - h)}$$

Step 10 Solve for $V_{xm} \& V_m$:

$$V_{xm} = \frac{Rg}{V_{ym} + \sqrt{V_{ym}^2 + 2gh}}$$
$$V_m = \sqrt{V_{ym}^2 + V_{ym}^2}$$

Step 11 Solve for Barrel Elevation Angle,
$$\gamma$$
: $\gamma = atan \left(\frac{V_{ym}}{V_{xm}}\right)$

Step 12 Estimate Total Potential Energy at Apogee: $PE = mgh_{max}$

Step 13 Estimate Mid-Terminal Flight Speed $V_{midterm} \sim \sqrt{gh_{max}}$

General Performance – Proverse Engineering

56

Step 1 Get All Performance and Geometric Data for Baseline Weapon

-Easy, just look at previous info. & tabulate

Step 2 Establish Geometric and/or Performance Goal(s)

2.1 If improved performance in the same form factor is asked:
 Determine the desired improved performance vector (range, PL, maneuverability, etc. .)
 -GMLRS rounds, optimize range

-NAMMO/Boeing rounds, optimize range

2.2 If better packing volume/lower weight is asked:

Update all aerodynamic and propulsion with new technologies & get new L/Dmax, new TSFC or Isp, new Wf, Wpl etc.

-AIM-120 & AIM-9 minimize total missile volume, shrinking symmetrically in all directions, save the warhead. Preserve warhead volume.

General Performance – Proverse Engineering Missiles

Step 3 Solve for New Size

3.1 New performance in same form factor is easy: solve with new, updated L/D's and TSFCs

3.2 Smaller size takes a bit more work as it's iterative:

3.2.1 Assume a smaller size by as much as 50%, then solve for performance

3.2.2 If performance doesn't measure up, solve again with 75%

3.2.3 If it's too much performance, reduce to 62.5%, it it's not enough, go to 87.5%

etc. etc. till closure

58 **General Performance** – Proverse Engineering GMLRS & Nammo/Boeing

Aerospace Design

Step 3 Solve for New Range

3.1 Assume mid-terminal flight speed is average for the flight, estimate time of flight using baseline munition flight (plus a little bit more):

3.2 Determine the mass of the fuel on board and $I_{sp}(1300s)$, TSFC iets

3.3 Given test and TSFC, estimate mid-terminal thrust:

3.4 Estimate Additional Power:

3.5 Estimate Additional Energy added to the total flight:

3.6 Estimate Ratio, ER of the new projectile energy to baseline projectile energy:

 $ER = \frac{mgh_{max} + t_{est}P_{add}}{mgh_{max}}$

3.7 Estimate the new range: $R_{new} \sim R_0 ER$

Unclassified Rev. 22 August 2023

$$t_{est} \sim (1.?)t = \frac{1.?}{g} \left[V_{ym} + \sqrt{V_{ym}^2 + 2gh} \right]$$

$$T_{midterm} \sim \frac{W_f}{TSFC \ t_{est}}$$
 $P_{add} \sim V_{midterm} \ T_{midterm}$

$$E_{add} \sim t_{est} P_{add}$$

$$(2.77 \text{lbf/(lbf-hr)) for ram}$$

Physical Model Preparation: Bill of Materials (BOM)

Part Name & Mfg no.	Material	Qty. Rq'd	Cost Ea.	Source/Supplier (URL)	Component Weight (lb)	Weight Fraction (%)
Main Gear Tires – 30 x 6.5 SBR	n/a	2 ea.	\$476	Goodyear	87	2.2
Nose Gear Tire – 18 x 4 SBR	n/a	1 ea.	\$320	Goodyear	23	0.58
Main gear oleo strut	stainless steel 15PH	2 ea.	\$19k	n/a	234	5.85
Nose gear oleo strut	stainless steel 15PH	1 ea.	\$2.6k	n/a	112	2.8
Main gear retraction actuator	n/a	2 ea.	\$3.9k	Textron Actuator Division	27	0.68
Aileron sections 1, 2, 3	Kevlar	2 ea.	\$8.7k	GKN Composites Inc.	3.2	0.08
Elevator sections 1, 2	Kevlar	1 ea.	\$3.3k	GKN Composites Inc.	4.8	0.12
Rudder sections 1, 2, 3	Kevlar	1 ea.	\$5.9k	GKN Composites Inc.	3.7	0.09
FJ44-4 Powerplants	n/a	2 ea.	\$6.9M	Williams International	460	11.5
Mk17 Ejection Seat	n/a	1 ea.	\$220k	Martin Baker	83	2.1
Upper wing skin	APC-2 PEEK/graphite	1 ea	\$390k	GKN Composites, Inc.	113	2.8
Lower wing skin	APC-2 PEEK/graphite	1 ea	\$280k	GKN Composites, Inc.	108	2.7
	Part Name & Mfg no.Main Gear Tires - 30 x 6.5 SBRNose Gear Tire - 18 x 4 SBRNose Gear Oleo strutMain gear oleo strutNose gear oleo strutMain gear retraction actuatorAileron sections 1, 2, 3Elevator sections 1, 2, 3FJ44-4 PowerplantsMk17 Ejection SeatUpper wing skinLower wing skin	Part Name & Mfg no.MaterialMain Gear Tires - 30 x 6.5 SBRn/aNose Gear Tire - 18 x 4 SBRn/aMain gear oleo strutstainless steel 15PHMain gear oleo strutstainless steel 15PHNose gear oleo strutstainless steel 15PHMain gear retraction actuatorn/aAileron sections 1, 2, 3KevlarRudder sections 1, 2, 3KevlarFJ44-4 Powerplantsn/aMk17 Ejection Seatn/aUpper wing skinAPC-2 PEEK/graphiteLower wing skinAPC-2 PEEK/graphite	Part Name & Mfg no.MaterialQty. Rq'dMain Gear Tires - 30 x 6.5 SBRn/a2 ea.Nose Gear Tire - 18 x 4 SBRn/a1 ea.Main gear oleo strutstainless steel 15PH2 ea.Main gear oleo strutstainless steel 15PH1 ea.Nose gear oleo strutstainless steel 15PH1 ea.Main gear retraction actuatorn/a2 ea.Aileron sections 1, 2, 3Kevlar2 ea.Elevator sections 1, 2, 3Kevlar1 ea.FJ44-4 Powerplantsn/a2 ea.Mk17 Ejection Seatn/a1 ea.Upper wing skinAPC-2 PEEK/graphite1 eaLower wing skinAPC-2 PEEK/graphite1 ea	Part Name & Mfg no.MaterialQty. Rq'dCost Ea.Main Gear Tires – 30 x 6.5 SBRn/a2 ea.\$476Nose Gear Tire – 18 x 4 SBRn/a1 ea.\$320Main gear oleo strutstainless steel 15PH2 ea.\$19kNose gear oleo strutstainless steel 15PH2 ea.\$2.6kMain gear retraction actuatorn/a2 ea.\$2.6kMain gear retraction actuatorn/a2 ea.\$3.9kAileron sections 1, 2, 3Kevlar2 ea.\$8.7kElevator sections 1, 2, 3Kevlar1 ea.\$3.3kRudder sections 1, 2, 3Kevlar1 ea.\$5.9kFJ44-4 Powerplantsn/a2 ea.\$6.9MMk17 Ejection Seatn/a1 ea.\$220kUpper wing skinAPC-2 PEEK/graphite1 ea\$390kLower wing skinAPC-2 PEEK/graphite1 ea\$280k	Part Name & Mfg no.MaterialQty. Rq'dCost Ea.Source/Supplier (URL)Main Gear Tires - 30 x 6.5 SBRn/a2 ea.\$476GoodyearNose Gear Tire - 18 x 4 SBRn/a1 ea.\$320GoodyearMain gear oleo strutstainless steel 15PH2 ea.\$19kn/aNose gear oleo strutstainless steel 15PH1 ea.\$2.6kn/aNose gear oleo strutstainless steel 15PH1 ea.\$2.6kn/aMain gear retraction actuatorn/a2 ea.\$3.9kTextron Actuator DivisionMain gear retraction actuatorn/a2 ea.\$3.9kGKN Composites Inc.Aileron sections 1, 2, 3Kevlar2 ea.\$4.7kGKN Composites Inc.Rudder sections 1, 2, 3Kevlar1 ea.\$5.9kGKN Composites Inc.FJ44-4 Powerplantsn/a1 ea.\$2.20kMartin BakerUpper wing skinAPC-2 PEEK/graphite1 ea.\$2.80kGKN Composites, Inc.Lower wing skinAPC-2 PEEK/graphite1 ea.\$2.80kGKN Composites, Inc.	Part Name & Mfg no.MaterialQty. Rq'dCost Ea.Source/Supplier (URL)Component Weight (Ib)Main Gear Tires - 30 x 6.5 SBRn/a2 ea.\$476Goodyear87Nose Gear Tire - 18 x 4 SBRn/a1 ea.\$320Goodyear23Main gear oleo strutstainless steel 15PH2 ea.\$19kn/a234Nose gear oleo strutstainless steel 15PH1 ea.\$2.6kn/a112Main gear retraction actuatorn/a2 ea.\$3.9kTextron Actuator Division27Main gear retraction actuatorn/a2 ea.\$3.9kGKN Composites Inc.3.2Alleron sections 1, 2, 3Kevlar2 ea.\$3.7kGKN Composites Inc.3.2Fl44-4 Powerplantsn/a1 ea.\$3.3kGKN Composites Inc.3.7FJ44-4 Powerplantsn/a2 ea.\$6.9MWilliams International460Mk17 Ejection Seatn/a1 ea.\$220kMartin Baker83Upper wing skinAPC-2 PEEK/graphite1 ea.\$280kGKN Composites, Inc.108Lower wing skinAPC-2 PEEK/graphite1 ea.\$280kGKN Composites, Inc.108

• • •

n

Copyright © R. M. Ba

14. Reverse Engineering of Baseline System

Following the reverse-engineering class notes, complete the following steps, presenting all important values, equations and figures:

- 14.1 Assignment for RAIDER Teams
 - 14.1.1 Get baseline missile data
 - 14.1.2 Construct design Mission Profile
 - 14.1.3 Assemble Payload-Range Diagram
 - 14.1.4 Get Weight of Propellant
 - 14.1.5 Approximate Isp. & TSFC
 - 14.1.6 Estimate Time of Flight (TOF) with live engine
 - 14.1.7 Update Mission Profile with derived values
 - 14.1.8 Solve for mission L/D values
 - 14.1.9 Solve for We/Wlaunch
 - 14.1.10 Solve for Lift & Drag expressions with Mach
 - 14.1.11 Solve for Mach and a at L/D Cruise
 - 14.1.12 Solve for CLeruise, L/Deruise and acruise
 - 14.1.13 Solve for cruise mid-point air density
 - 14.1.14 Find mid-cruise point altitude for standard atmosphere
 - 14.1.15 Update Mission Profile to include mid-point cruise details

14.2 Assignment for BASS Round Team

14.2.1 Acquire and measure three different BASS prototypes: 0.410, 20mm & 30mm

14.2.2 Generate BASS CAD Figures of the three different BASS prototypes and present isometric, shaded figures of the entire assembled BASS rounds including i.) assembled full cartridges, ii.) BASS exit from the cartridges in the barrel, iii.) ¹/₂ separation following muzzle exit, iv.) full separation of flechette and sabot with backwards sabot in free-flight, and vi.) full separation with forward-flying, stable sabot in flight.

14.2.3 Generate assembly drawings including front, top and side of all three BASS prototypes and present them in the report.

14.2.4 Rework Chapter 12 to include a full-cartridge length BASS tail

12.2.5 Rework Chapter 13 to determine the length of the BASS tail for neutral stability, but going all the way to Mach 10.

15. Proverse Engineering Advanced System

Following the proverse engineering class notes, complete the following steps, presenting all important values, equations and figures:

- 15.1. Assignment for RAIDER Teams
- 15.1.1 Tabulate all known aerodynamic & inertial info. for baseline weapon
- 15.1.2 Note changes in Sref, L/D and TSFC that will come from the RAIDER configuration
- 15.1.3 Optimize designs in different ways depending on chosen system:
 - 15.1.3.1 RAIDER AIM-120 AMRAAM Replacement

Match AMRAAM seeker, warhead & range, design tube-launched variant Work to minimize size

15.1.3.2 RAIDER AIM-9 Sidewinder Replacement

Match AIM-9 seeker, warhead & range, design tube-launched variant Work to minimize size

15.1.3.3 RAIDER Long-Range GMLRS Replacement

Match GMLRS seeker & warhead, design tube-launched variant Work to maximize range.

- 15.1.3.4 RAIDER 155mm Boeing/Nammo Ramjet Artillery Shell Replacement Match Boeing/Nammo 155mm munition GNC package & warhead Work to maximize range
- 15.1.3.5 RAIDER 105mm Boeing/Nammo Ramjet Artillery Shell Replacement Match Boeing/Nammo 105mm munition GNC package & warhead Work to maximize range

15.2. Assignment for BASS Team:

15.2.1 Enter the 0.410, 20mm and 30mm BASS flechette-sabot combinations into PATRAN/Nastran, oriented nose up with a constant pressure load on the base of the sabot. 15.2.2 Increase the density of the flechettes to 10,000x the density of tungsten and apply a suitable pressure on the surface of the sabot to balance the force. Plot the Von Mises stresses in the sabot.

62

16. Model CAD and Physical Model Preparation

16.1. Assignment for RAIDER Teams

16.1.1 Generate CAD of New RAIDER Configuration at the Full Scale

Make a CAD model of the new RAIDER configuration observing standard sizes of cardboard tube stock that is available along with other components.

16.1.2 Generate of Bill of Materials (BOM) for the Model

Generate a BOM for the RAIDER model as shown in class including all components named, numbered and priced.

16.1.3 Components to be Ordered

Generate a list of components to be ordered, based on the BOM along with all appropriate references.

16.1.4 CAD Component STL Generation for 3D Printing

Generate .stl files of all components that will be needed for 3-d printing

16.1.5 Assembly Methods and Markings

Discuss the methods of assembly of all the components including a discussion of resins, foams, tapes and other fasteners. Include a figure of a preferred color scheme of the finished model along with markings indicating an inert weapon and proper designations.

16.2. Assignment for BASS Team

16.2.1 Join Dr. Barrett in the lab to begin 0.410 tool preparation, 20mm and 30mm BASS round fabrication.

16.2.2 Fabricate at least one 0.410, 20mm and 30mm BASS flechette and sabot prototype

16.2.3 Document said fabrication and present pictures of fabrication along with fabrication steps.