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1. INTRODUCTION, MISSION SPECIFICATION , AND PROFILE

The objective of this projeds to respond to the request for proposal by AtéAlesign a shoulder
launched antUAV missile. The missile can have either lethal ordethal means to destroy or disable
theUAV. As UAVs are highly maneuverable, the missihall demonstrate thdtis capableof endgame
maneuversin addition,this reportprovides engineering analysis and total system design associated with
this missile system including personnel effegtss reportdeterming a system concept that best satisfies
mission requirenm@s and goalstated in th&RFPanddescribs the design process, the physical and
performance characteristics of the final system design and its components, an operationalcoshcept,
estimate, development plan, and necessary support equipment aneésthieres necessary to comply

with thetechnicalrequirement$1].

Table 1.1: Technical Requirements[1]

Target UAVs

Group 2 UAVs (threshold) group 1 UAVs (objective)

Range

3 nmi threshold)i 3.5 nmi (objective)

Service ceiling

3,000 ft (thresholdj 5,000 ft (objective)

Launcher+ 1 missilesweight

<401b

Launcher + 10 missiles weight

< 125Ib

Launcher + 10 missiles pack weight

< 50 Ib (distributed across 3 people)

Interdiction rate

10 UAVs/hour

System storage without maintenance 10 years
Warhead arming distance (if used) 200 ft
Noise levelwithing 100 ft of launch 120 dBa
Launch acceleration 2 gb6s
Time to change payloadif used) 5 minutes

Production rate

200 missiles and 20 launchers a yearlfoyears plus 15

missiles for development testing

System initial operating cability

December 2027
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1.1. MISSION PROFILES

NS -
3) Explosive
engagement

3) Strafe

eugagemem/
" = / engagement
-

3) Strafe

5,000 ft  2) Climb to
5,000 ft

5) Descend 5,000 ft

1) 2g launch
6) Soft landing

Figure 1.11: Three possible mission profiles: A, B, and C

Based orinitial technical requirementghree possible mission profileseve considered ahown
above The first is a typical shoulder launched missiglosiveengagementThe second is aort
explosiveengagemerguch as a net ather entanglement@chanism. The third isr@usablesystem. As
seen in further sections of this repdie Valkyriesystemdesign most closely resembles this third
mission profile in order to capitalize on the reusabdityhe system and the cost benefits associated with

such a design
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2. MARKET REVIEW AND COMPETITION IN THE MARKET

Current counteunmanned aircraft systemS-[UAS) must partially rely on netraditional methods
to detect the presence of hostileuoauthorized small UAS because of their inability to be detected based
on their size, construction, and flight altitude. These methods include using-eletitad, infrared, or
acoustic sensors to detect targets by visual, heat, or sound sign2jtuReslar systems are another
method, but unreliable due to the signature and size of small UAS. Identifying the wirahessisegl to
control these systems can also be used. For redundaostof these systems can be combined to

provide more reliable systems.

After detecting UAS, a number of methods can be used to disable or destroy them. This includes
jamming their signal to interfere with communications to their operator, or using guats, directed
energy, traditional air defense systems, or trained animals such as 2addesduse the threat of small

UAS has developed tiin the last few years, mostlQAS systems are very new or still in development.

One of the most capable-@CAS i s Fortem
DroneHunter. This drone isfally autonomousystem that detects,

classifies, and captures drones within a geofenceal dhe aito-

air system uses SWAR electronically scanned phased array radar
tha allows for good range, resolution, accuracy, and clutter

I o _ Figure 2.1: Fortem Technology
rejection and can be used day or night in different kinds of weatl DroneHunter [4]
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After identifying its target, the DroneHwertcan track and follow the target until it captures it with a net

and carries it ta safe locatiof3].

LT :$ - ; 3. Intercept
§ 2\ rzﬂ

/7 ﬁ 1. Enemy Drone Detected i

\.;3: . L3> X

5 ,
A

g i-.;;
}tﬁ\

4. Capture and
Securement

2. DroneHunter
Launch to Interdict

Figure 2.2: DroneHunter Concept of Operations

Low-costsolutionsfor close range defea utilizenets fired by humansa MTEC6s Skynet
12 gauge round fired through a choked and rifleg¢yd@ge shotgun. ttontaindfive segments that use
centrifugal force to separate and creafefaot-wide net to trg and
disable a drondt was developed for rapid deploymeatdefend
againsitommercially availableroneg4].Dr o n e DNetGenn s

X1, developed in the UKis a handheldjun thatcan shoot two

differentkinds of nets up to 15 meteasd is mainly catered toward
law enforcement and security]. Neither of these systems are

automated andiould likely only be considerelhst resorsystems for

Figure 2.3: AMTEC Skynet
Mi5 [4]

military defenseapplicdions.
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2. Skynet Mi5 fires from 3. Centrifugal

standard rifled shotgun force deploys
net to capture | e
NetGun X1 fires from a drone_ -

handheld firing platform

Skywall fires a canister
1. Target Detection ~ via compressed gas from a
shoulder launcher

Figure 2.4: Centrifugal Net DeploymentCONOPS

OpenWorks Engineerilgs S ksystem is & maportable
shouldedauncherthat uses compressed gadaunch grojectile
towarda droneusing its SmeScopetechnology that compensaties

t he dr on e d@awe auppreadcdllyl hempibjectileexplodes into

a net that thenaptures and disables the draaeising it to fall to the ;

—

ground.It has two kinds of reusable projectiteme with a net onlgnd ’.’u /S .
. . * Figure 2.5: OpenWorks
one with a net and parachutbat arepre-programmedy the guids Skywall [6]

targeting system texpand the net at the right tir(féigure 25) [7].

| XI Technol ogyds Droneki |
portable handheld-©AS that utilizes software
defined radio. This allows the system to tattet

specific frequencies a drone is using add aoise or

additional data to the signal to break the link between
Figure 2.6: IXI Technology Dronekiller [ 8] the drone and operator. It also works against drones

capable of charet-hopping while still only blocking
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certain frequencies sxs tonot jamothernearbydevices using similar frequees The loss of

communication between the drone and operator causes the drone to return to its hdrigurager)
[8].

3. Systems are capable

ﬁ / Sl of jumping frequencies

to prevent targets from
switching frequencies

o

2. Dronekiller, REX-1/2 and
other RF Blocking systems emit
radio waves to block
transmissions between the
target and the pilot

4. After loss of contact with
pilot, target drones return to
home base or mitiate fail-
safe landing procedure

1. Target Detection

Figure 2.7: RF Blocker Concept of Operations
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3. DESIGN OPTIMIZATION FUNCTION

The purpose dahis chapter is to develop the optimizatiamdtion for theantrUAV system.Mission

requirementgTable3.11) are based on technical requirement thresholds. Mission objectives are based on

cost and mission effectiveness as well as objectives listed iadheical requiremesatAncillary
objectivegTable3.12) are basedn subject matter expefeedback. From these requirements and

objectives, the optimization function can be found using the following equation:

" MOADOE! EHAOEDET & 2 IB P

3.1. OPTIMIZATION FUNCTION

Table 3.11: Mission Requirements

. PEIEE OGRREO AN ADO5! 6 O
R Target UAVssize nE I ® BAA E O LRI O85! 6 0
PpE@EAT CAT 1 E
Rz Range TE@AT CAl | E
R Servi " pEAE OE OAEDAT OGBT DTAD AT
’ ervice cefing nEM OE OBiAEDA | OAT BIADA|
R Launcher + 1 missiles weiaht PE/EAECHED O1 ARIABDOOEIT A
‘ aunche ssties weig nE/EA E € BEG O1 A RIADO O & InAA
. _ PEXAECHEER Ol ARAE OOEpP AIOA
Rs Launcher + 10 missiles weight MEXEAE CHER O1 AR A G OOED ALOA
_xAECHEEA Ol AEAEOOEI A
'vp E A& v Tt A
R Launcher + 10 missiles pack weight oD AT DI A
6 op ExAEa;mmAﬁﬂazooath&g
e cPAT P1 A v
R nterdiction rate pEEH OA OROBHET T el 00
’ < nEgH OA O DADBEE 1T eI 60O
. . PE@ET CAQETAR OAT ATUAA DO
Rs System storage without maintenance D O MR A OAT ADAA OO
L . pEAAOEARRRAEO©OAT A&D
Ro Warhead arming distance (if used) ME¥EA OF A B A AE® OAL AMKO
: L pT T ExXEROR E#EOp ¢ A" A
Rio Noise level withing 100 ft of launch nl i BCEAO B EAEOAD aA " A
. PEIFAOAARBAI el 1
Rz Launch acceleration MEEA ORABAT A OATHED |
R Time to ch oad PEGE OREA®AQAIT T WA
v 'me fo change payloa nEGE OREAPAAT T W AET
i i pEYH #$ AAT AAQ X
Ris System initial operating capability TEVE # $ A A A [ ARy
. 200 missiles and 20 launchers a year for 10 years plus !
Ria Production rate L ;
missiles for development testing
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Table 3.12: Designand Ancillary Objectives

[ U .
O1 Target UAV size C EIEO?‘E‘{EOK;/?” @ 60
pEIE OGRA B O ALK K5 6 O
2ALCH T E et EoAl coal 1 E
Oz Range ™1 i EH i o 'C
pE@EAT Ci | E
3 AOGRKA &t CED o a e s e a .
Os Service ceiling D Eclt mE£OOA O QRAA Eit m&OD
pE@EAT Culm nmEOD
0O+ wmb .
Oa Kill probability ~pomnp CETP O+ pmmP
__pEGE pnnb
N #1 00 #1 00
Os Minimum cost 7T 60
N , 0A@DOT O 0A@DOT O
Os Minimum complexity 0ABBBT O
N , 7 7
O~ Minimum weight 7
o, | eroperable Wi VIl | pE@ 0AOT B EGEMIED oD AR MEI OAAT AT O
! arspace and 'aw | nElm Bl OAOT B K GEBED O AKRAI OAAT AT O
enforcement } ~ ) )
AO, | Compatible with FCCang  pEAE | DAOE BEAT &' DACOI AOETT O
? FAA regulations nEiA A | DPAOEREAT &! DACOI ACETT O
. PEEZEA OAT MADAAT A
AOs3 Optional hard launch TEVH A DA ORADAAT A
AO4 No energetics p)lfIIEﬁEI ,ﬁé ! AAC)%é%”)G}DE%&AAOO
. pElEPUOT OABGEGAKAO
AOs No pyrotechnics HEBUOT OAGGA £ A O
A0 Safe bystander PEEAREAO OAA,EE TAQRACC ATAAGEG A
6 engagement nE@ OAED O ANTARAC ATARGED A .
AO Day/night/alkweather PEAEATU E QkIOIx AAOER OA O MADGGAEN E
! interdiction capability | MEIHA ATUE @kIOix AACEROA O AASGHRIEN EOU
A0 Minimal traini pEIET EO GA EO AOERA
’ inimal fraining TE 482 O A IODMREA AR TE O A A
A0, | AVS accommodation with PEVB AT | PAOE®BAAI AOU
° telemetry nEmBI 1 Al | DAD@AIN Al AOU
. . . pE@E IOKT OAOARED
AO10 1 minute interception TEGE O] OAOARBD
AO T UAV si pEIEE OGRRE O NI KB 6 O
u argetuAv size nEIAE O GRATAER AN £ 6 O

Based on subject matter expert feedb#uiancillary objectives were weightedhalf as much as

themission objectives leading to the following system optimaratunction:

/

aliel

ppP
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4. STAMPED DATA PRESENTATION

The following section examines the current competitors in the UAV suppression market. The examples
presented in this section are divided into three categbased on the method of interdiction used to down
enemy dronesThefirst of these methods radiofrequency jammingRF isan engagement form where
dronecommunicatioris interrupted defaulting the drone to emergency landimgetreat procedure$his
method of interdictios measured i hours ofuse per chargecompared taveight. The seconanethod
of interdiction iskinetic kills, which either impact enemiggstroyingtheir component®r destroying the
droneitself, ortrapping the enemy drone facapture. Thesengagement types ameasured imumber of
interdictions compared taeight as somdike the stinger missile are single shot, while others allow
multiple usesFinally, there are a number dfterdiction systems which do not fit into ooé the two
categories abov@hese are presented in thation markedothermechanisms and are trackednumber
of interdictions per weightThe following page contains a graphical representation of the market

competitors.
14
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5. CLASS | WEIGHT SIZING

The weight sizing methods performed in this seciianbased on STAMPED analysis of empty
weight to takeoff weight ratios. A modified ite
1 [9]is used to estimate the takeoff, empty, and fuel weiftihe system. Based on assumptions made
from sinilar UAS in Group 1 as defined by the Department of Defense, initial preliminary estimations
were made for the takeoff weight of the system and empty to takeoff weight ratio. The tentative operating
emptyweight is calculated based on these estimationgtfEmweight and operating empty weight will
always be equal because there is no weight of a crew and no trapped (unusable) fuel and oil in an electric

system.

Instead of using fuel weight estimations asalibed in Airplane Design Part 4] an alternative
method is used to account for the mass of the battery in place of fuel. A fittiomy| chloide battery
with specific power of 1000 watts/kd(] is used to estimte the mass of the battery needed. A cruising
speed of 150 ft/s is considerfat the amount of power needed. For each iteration, a takeoff weight is
estimated to determine the battery sizing and empty weight of the aircraft until the empty weight
estimaion is within 0.5% of the design point. After several iterations, a batteyhivef 0.035 Ibf is

calculated with a payload weight of 0.11 Ibf and takeoff weight of 0.29 Ibf.

The final preliminary weight sizing configuration is show in Table Bnfortunately, there are very
few systems currently available with similar specifioat and information about them is very scarce.
Many assumptions were made based on the information found through STAMPED analysis and
requirements from the RFP. Sample calcafaifor the final preliminary weight estimations are shown in
the appendix.

Table 5.1: Final Preliminary Weight Sizing
W (Ibf) Whatery (IDF) Woe (Ibf) Wi (Ibf)

0.29 0.035 0.15 0.11
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6. DESIGN OF ENGAGEMENT SYSTEM

This chapter of th report covers the various engagement systems considetesl desigrprocess.
Table 6.1 below showsdesigns that were considered but decided against for a variety of aatety
complexityconcerns.

Table 6.1 Initial Designs Consideral for Engagement System

Concept of Interdiction Method Concept of Interdiction | Method
V= Grappler: EMF Absorbing
9 Add weight to Paint:
cause loss of 1 Spray EMF
control absorbing paint
disrupting
communication
Kinetic Kill: Expanding Foam:

9 Ram into and

1 Spray foam
pierce enemy

increasing drag

UAVs and eliminating
lift
EMP: Flamethrower:
1 Short circuit 1 Melt or destroy
enemy hardware sensitive
to cause loss of components

control

Napalm Charge:
1 Melt or destroy

sensitive

components

Electromagnet:
9 Corrupt or erase
data
9 Cause loss of
control

Explosive Charge:
9 Destroy enemy

High Power Laser:
9 Melt or destroy

sensitive UAVs with an
components explosive blast
RF Jammer: SemtiAuto Rifle:
1 Interrupt i Tubemagazine
communicatiorto fed .22longrifle
cause loss of system
control

Retractable Saw:
9 Remove critical
components

Collapsible Spear:
1 Ram into and
pierce enemy
UAV
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Further design consideration produced the degigesentedbelow inTable6.2. These design options
addressed safety conceassociated witengagement methods relying lange explosiveand firebased

engagement systems, as well as energy use and mechanical congplesisnsbrought up byprevious

designs.
Table 6.2 Shotgun Based Engagement Systems
Concept of Interdiction Method Concept of Interdiction Method
& | .410 Shotgun: Rope Dart:
1 Destroy 1 Destroy
sensitive and un sensitive and
armored un-armored
components components
9 Tether target to
interceptor,
allowing
capture
Chain Shot: Net Cannon:
1 Chain Shot (two 1 Entangle
heavy spheres propellers or
bound together | (-~ enginedo
with a length of cause loss of
chain)to shatter control
enemy
quadcopter
limbs
Kevlar Wad:
9 Entangle
propellers or
enginedo cause
loss of control

The natural limitations of range present in shotguns atklressed the concern with havingun
platform mounted to the interceptassociated witthe semirautomatic rifle design discussed previously.
Several of thse designs were later testetording to safbandling procedures to determiefiectiveness

of deployment

Range experimentsere conducted at tHelatte Falls Conservatioirea Shotgn Ran@. Safety of
personnel involved in the testing process as well as ofralividuals not involved in the test was of the

utmost importaoe durhg the testing process. In the pursuit of safatyndividualswere required to wear
23




hearing and eye ptection during the tesiring procedureDuring the test firing, the shotgun usedite
the test shells was mountedatground stand designed to absorb reseiture the firearm, amadl place the
test individuals outside the potential danger zon@icRfly when firinga shotgun or similar firearm, the
user 6s f ace ilseeghbfthegumnd sodykusingtthe tedt dtaed,itidividuals conducting

the teswere removed from the zone of danger in case of a breech explosion due toingsload

Rounds testedt the range included a selection of the engagement systems outliiadxtkiti2, namely
the Chain Shoand Kevlar Wad. In addition to these desighs,team also tested firing strandKafvlar
loaded looselystrands with weight on only one erahd finally strandswith a single weighbrushed to
form acat of ninetails. Each test procedure began withrefully slicing the top off of a standat@-gauge
shell and carefully weighing ttehot pesent in the shells as shofigure 6.1 The shellsverethenreloaded
with the testround and the original weight was matchby supplementing the tesbundwith pellets
extracted from the standamlind After this, the shell was taped shut and cdiefoaded into the shotgun.
Prior to cocking the gun, safety cheekere conducted to ensuthat no personnel were in the field of fire

and that all members present had donned proper safety gear. After completing all safety checks, the gur

was cocked anfired. One such test can be seen here

Figure 6.1 Emptied 12-Gauge Shells (left) andVeight of Shot (right)
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https://vimeo.com/522963257

Figure 6.2 Catalogue of Tests Including Effectiveness Test AgainatTree Branch
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