AE 721 Aerospace Design Laboratory I Missile Design I

Dr. Ron Barrett-Gonzalez (a.k.a. Dr. B.) Professor of Aerospace Engineering

2124 Learned Hall The University of Kansas adaptivebarrett@gmail.com (785) 856-9969 (home) (785) 864-2226 (office) (785) 760-4614 (cell)

2

Aerospace Design

Chapter 2: Aerodynamic Considerations in Missile Design, Development, and System Engineering

Conceptual Design and System Engineering Require Broad, Creative, Rapid, and Iterative Evaluations

Flight Performance / Trajectory is Driven by Forces (Aerodynamics, Propulsion, Weight) on the Missile

Example of Typical Forces on a Missile

Aerospace Design

Chapter 2: Aerodynamics

Aero Configuation Sizing / System Engineering has High Impact on Mission Requirements / MOM

Aero Configuration Sizing / System Engineering Parameter	Flight Performance MOM			Other Typical Measures of Merit						Sys Engr Constraint
	Range	Maneuver- ability	Time to Target	Robust- ness	Lethality	Miss Distance	Observ- ables	Survivability	Cost	Launch Platform
Nose Fineness (I_N / d)	00	0	00	0	00	00	•	•	0	0
Diameter (d)	00	0	00	0	•	Θ	0	0	00	0
Length (I)	00	0	Θ	0	00	00	0	0	\bigcirc	•
Wing Geometry / Size (S_w)	0	•	Θ	0	•	•	Θ	\ominus	-	•
Tail Stab Geom / Size (S_T)	Θ	•	0	0	Θ	Θ	Θ	Θ	-	•
Flight Control Geometry / Size (S _{Control})	0	•	0	0	•	•	Θ	•	0	•
Flight Conditions (Angle of Attack α, Mach Number M, Altitude h)	•	•	•		•	•	•	•	•	0

Conceptual Design Aerodynamic Methods of This Text are Based on Aero Configurations Buildup

Note:

 C_{D_0} = Zero-lift drag / dynamic pressure / reference area, C_N = normal force / dynamic pressure / reference area, C_m = pitching moment / dynamic pressure / reference area.

Conceptual design prediction methods of this text assume independent aerodynamics of body, wing, and tail. These methods do not include aerodynamic interactions of

- Body-wing
- Body-tail
- Wing-body
- Wing-tail
- Wing-wing
- Tail-body
- Tail-wing
- Tail-tail

Conceptual Design Total Aerodynmic Force Mat be Estimated by Summing Individual Contributors

Note for figure: M = 2. Prediction from linear wing theory, slender body theory, and Newtonian impact theory.

FIF.

 α = Angle of attack, δ = Flight control deflection.

*Smaller diameter missile requires longer length to package subsystems **Larger diameter missile can package subsystems in shorter length

Note: Typical body fineness ratio is I / d > 5 (Javelin I / d = 8.5) and I / d < 25 (AIM-120 I / d = 20.5)

Aerospace Design

Chapter 2: Aerodynamics A Small Diameter Missile has Lower Drag

Missile Finess Ratio May be Limited by Resonance of Body Bending Frequency with Flight Control

Derived from: AIAA Aerospace Design Engineers Guide, American Institute of Aeronautics and Astronautics, 2012.

Faceted and Flat Window Domes can Provide Low Distortion, Low Drag, & Low Radar Cross Section

Body Maximum Zero-Lift Drag Coefficient Occurs Near Mach 1

 $(C_{D_0})_{Body} = (C_{D_0})_{Body,Friction} + (C_{D_0})_{Base} + (C_{D_0})_{Body,Wave}$ $(C_{D_0})_{Body,Friction} = 0.053 (I/d) [M/(qI)]^{0.2}. Based on Jerger reference, turbulent boundary layer, q in psf, I in ft.$ $(C_{D_0})_{Base,Coast} = 0.25 / M, \text{ if } M > 1 \text{ and } (C_{D_0})_{Base,Coast} = 0.12 + 0.13 \text{ M}^2, \text{ if } M < 1$ $(C_{D_0})_{Base,Powered} = (1 - A_e / S_{Ref}) (0.25 / M), \text{ if } M > 1 \text{ and } (C_{D_0})_{Base,Powered} = (1 - A_e / S_{Ref}) (0.12 + 0.13 \text{ M}^2), \text{ if } M < 1$ $(C_{D_0})_{Body,Wave} = (1.59 + 1.83 / M^2) \{ \tan^{-1} [0.5 / (I_N / d)] \}^{1.69}, \text{ for } M > 1. Based on Bonney reference, tan^{-1} in rad.$ Nomenclature: $(C_{D_0})_{Body,Wave} = body zero-lift wave drag coefficient, (C_{D_0})_{Base} = body base drag coefficient, (C_{D_0})_{Body,Friction} = body skin friction drag coefficient, (C_{D_0})_{Body} = body zero-lift drag coefficient, I_N = nose length, d = body diameter, I = body length, A_e = nozzle exit area, S_{Ref} = reference area, q = dynamic pressure, tan^{-1} [0.5 / (I_N / d)] in rad.$

Supersonic Body Wave Drag is Driven by Nose Fineness

Source. Bonney, E.A., et al, Aerodynamics, Propulsion, Structures, and Design Practice, "Principles of Guided Missile Design"

Aerospace Design

Chapter 2: Aerodynamics

Moderate Nose Tip Blutness Causes a Relatively Small Increase in Supersonic Drag

Note: Nose tip bluntness increases drag, increases nose tip strength, and decreases nose tip aero heating

Nomenclature: d_{Nose Tip} = nose tip diameter, d = body diameter (reference length), I_N = nose length, tan-1 [0.5 / (I_N / d)] in rad

Reference: Chin, S. S., Missile Configuration Design, McGraw-Hill Book Company, New York, 1961

A Boattail is More Effective for a Subsonic Missile

Note: Boattail angle should be < \approx 12 deg for subsonic missile and < \approx 7 deg for supersonic missile, to avoid flow separation.

Aerospace Design

Chapter 2: Aerodynamics

A Lifting Body Has Higher Normal Force

Note: Based on slender body theory (Pitts, et al) and cross flow theory (Jorgensen) references. Valid for I / d > 5. d = 2 (ab)^{1/2}

Body Lift-to-Drag Ratio is Impacted by Angle of Attack, C₄₀, Body Fineness, and Cross Section Geometry

 $L/D = C_L/C_D = (C_N \cos \alpha - C_A \sin \alpha)/(C_N \sin \alpha + C_A \cos \alpha) \approx (C_N \cos \alpha - C_{D_0} \sin \alpha)/(C_N \sin \alpha + C_{D_0} \cos \alpha)$ For lifting body, $|C_N| = [(a/b) \cos^2(\phi) + (b/a) \sin^2(\phi)][|\sin(2\alpha) \cos(\alpha/2)| + 1.3(1/d) \sin^2\alpha]$

Note: Based on slender body theory (Pitts, et al) and cross flow theory (Jorgensen) references. Valid for I / d > 5

Aerospace Design

Chapter 2: Aerodynamics

A Lifting Body Required Flight at Relatively Low Dynamic Pressure to Achieve High Lift-to-Drag Ratio

Note. Example figure based on following assumptions:

Body lift only (no surfaces), slender body theory + cross flow theory, cruise flight (lift = weight), W = L = 2000 lb, d = circular diameter with same cross sectional area as ellipse = 2 (a b)^{1/2}, S = cross sectional area = 2 ft², I / d = 10, C_{Do} = 0.2, ϕ = 0 deg

© R.

Aerospace Design

Chapter 2: Aerodynamics

Tradeoff of Low Observable Missle Planform and (L/D)Max Versus Volumetric Efficiency

Pitch, Yaw, and Roll Animation

Chapter 2: Aerodynamics Oitch Moment Stability Δ Cm / Δ a and Static Margin ($X_{AC} - X_{CG}$) Define Pitch Static Stability

Static Margin in Diameters = (Aerodynamic Center – Center of Gravity) / Diameter = $(x_{AC} - x_{CG}) / d = -(\Delta C_m / \Delta \alpha) / (\Delta C_N / \Delta \alpha)$

Body Aerodynamic Center is Driven by Angle of Attack, Nose Length, and Body Length

Note: Based on slender body theory (Pitts, et al) and cross flow theory (Jorgensen) for axisymmetric nose-cylinder. No flare. (x_{AC})_B = location of body aerodynamic center, I_N = length of nose, α = angle of attack, I_B = total length of body.

Aerospace Design

Chapter 2: Aerodynamics

An Aft Flare Increases Static Stability

Example of Static Margin for Body-Flare Configuration (THAAD)

Nomenclature:.

M = pitching moment, α = angle of attack, x_{AC} = location of aerodynamic center, x_{CG} = location of center of gravity, d = diameter of body, ($C_{N_{\alpha}})_{B}$ = normal force coefficient variation with angle of attack for body, ($x_{AC})_{B}$ = location of aerodynamic center for body, I_{N} = length of nose, ($C_{N_{\alpha}})_{F}$ = normal force coefficient variation with angle of attack for flare, ($x_{AC})_{F}$ = location of aerodynamic center for aerodynamic center for flare, I_{B} = location of body, d_{F} = diameter of flare

Aerospace Design

Chapter 2: Aerodynamics

An Aft Flare Increases Static Stability (cont)

Nomenclature: x_{AC} = location of aerodynamic center, x_{CG} = location of center of gravity, d = diameter of body, $(C_{N_{cf}})_B$ = normal force coefficient variation with angle of attack for body = 2 / rad, $(x_{AC})_B$ = location of aerodynamic center for body = 0.63 I_N , I_N = length of nose, $(C_{N_{cf}})_F$ = normal force coefficient variation with angle of attack for flare = 2 [$(d_F/d)^2 - 1$], $(x_{AC})_F$ = location of aerodynamic center for flare = $x_F + 0.33 I_F [2(d_F/d) + 1]/[(d_F/d) + 1], d_F$ = diameter of flare

Chapter 2: Aerodynamics

Tail Stabilizer Advantages: Drag & Flight Control, Flare Stabilizer Advantages: Aero Heating and Stability

Most Supersonic Missiles Do Not Have Wings (cont)

*Relatively small wing may be best @ sea level **Based on assumption of aero flight control ***Lower angle of attack required for maneuver

Chapter 2: Aerodynamics Most Subsonic Cruise Missiles Have Relatively Large Wings (Cont)

Aerospace Design

Chapter 2: Aerodynamics

Examples of Guided Bombs That Have Wings for Extended Range

Definition of Planar Aerodynamic Surfrace Geometry Parameters

- c_{mac} = mean aerodynamic chord length
- Λ_{LE} = leading edge sweep angle
- δ_{LE} = leading edge section total angle
- t_{mac} = max thickness of mean aerodynamic chord
- b_e = span of exposed planform
- Se = area of exposed planform
- A_e = b_e² / S_e = aspect ratio of exposed planform

Aerospace Design

Chapter 2: Aerodynamics

Normal Force Coefficient of a Planar Surface (Wing, Tail, Canard) is Higher at Low Mach

Linear Wing Theory \Rightarrow d C_N / d $\alpha \approx [4/(M^2 - 1)^{1/2}](S_{\text{surface}} / S_{\text{Ref}})$, if $\alpha' < \approx 10 \text{ deg}$, M > {1 + [8/(π A)]²}^{1/2} Slender Wing Theory \Rightarrow d C_N / d $\alpha \approx (\pi A/2)(S_{\text{surface}} / S_{\text{Ref}})$, if $\alpha' < \approx 10 \text{ deg}$, M < {1 + [8/(π A)]²}^{1/2}

Note: Linear wing theory and slender wing theory equations from USAF Stability and Control DATCOM Note: Slender wing theory good accuracy limited to A < \approx 2 for small effects of compressibility, wing sweep, and taper ratio Nomenclature: A = Aspect ratio, S_{Surface} = Surface planform area, S_{Ref} = Reference area, α = Angle of attack
Aerospace Design

Chapter 2: Aerodynamics

High Normal Force for a Planar Surface Occurs at High Local Angle of Attack

Aerospace Design

Chapter 2: Aerodynamics

Aerodynamic Center of a Planar Surface Moves Aft with Increasing Mach Number

Hinge Moment Increases with Dynamic Pressure and Effective Angle of Attack

Skin Friction Drag is Lower for Small Surface Area

Based on Jerger reference

Aerospace Design

Chapter 2: Aerodynamics

Supersonic Drag of Planar Surface is Smaller if Leading Edge Has Sweep and Small Section Angle

Aerospace Design

Chapter 2: Aerodynamics

Wing Subsonic Aero Efficiency L/D is Driven by Angle of Attack, CDO, and Aspect Ratio

Aerospace Design

Chapter 2: Aerodynamics

Planar Surface (Wing, Tail, Canard) panel Geometry is a Tradeoff with Many Considerations

43

Chapter 2: Aerodynamics Examples of Wing / Stabilizer / Flight Control Surface Arrangements and Alternatives

**Note: More than four tails have lower induced roll C₁₆ and more pitch / yaw stability for span limit (e.g., JSOW). Free-to-roll tails and interdigitated surfaces also have lower induced roll C₁₆.

Chapter 2: Aerodynamics Most Missiles have Aero Flight Control with Four **Control Surfaces Providing Pitch, Yaw, Roll** Control

Control Integ	Control Surfaces	Example	Control Effect	Cost Pa	ackaging
Pitch / Yaw	2	Stinger FIM-92 📰		•	•
Pitch / Roll	2	ALCM AGM-86 📕	1.2	•	•
Pitch / Roll + Yaw	3	JASSM AGM-158			•
Pitch / Yaw / Roll	3	SRAM AGM-69	<u> </u>		
Pitch / Yaw / Roll / Cruciform Most Con	4	Adder AA-12 💻	0	0	0
 Pitch + Yaw + Roll 	5	Kitchen AS-4	0	0	0
Pitch / Yaw + Roll	6	Derby / R-Darter	•	-	
Pitch / Yaw / Roll	8	Stunner 📼	•	-	-
(Blended Canard – Ta	ail Control)		•		
Note:	Superior	Good (Average	-	Poor

There are Many Flight Control Aerodynamic Configuration Alternatives

	Control Design	Fixed Surface
 Flight Control	Alternatives	Alternatives
Tail	Cruciform (4) Tri-tail (3) Not Compressed Folded Wraparound Switchblade	Wingless Wing Strake / Canard In Line with Controls Interdigitated with Controls Number (2, 3, 4)
Canard	Above Rolling Airframe (2)	Tail (3, 4, 6, 8) Tail + Wing In Line with Controls Interdigitated with Controls
Wing	Above	Tail (3, 4, 6, 8) Strake / Canard & Tail In Line with Controls Interdigitated with Controls
Thrust Vector Control (TVC) or Reaction Jet Control	Movable Nozzle Jet Tab Jet Vane Axial Plate Secondary Injection Normal Reaction Jet Spanwise Reaction Jet	Tail (3, 4, 6, 8) Tail + Canard / Strake Tail + Wing

Chapter 2: Aerodynamics Missile Flight Control Alternatives are Driven by Maneuverability, Packaging Efficiency, and Cost

Tail Flight Control is Efficient at High Angle of Attack

48

rights res

Copyr

Chapter 2: Aerodynamics About 70% of Tail Flight Control Missiles have Wings

Note: Wing aero center should be near missile center of gravity ($\approx 50\%$ of missile length), to avoid large shift in static margin.

50

Aerospace Design

Chapter 2: Aerodynamics

Tail Flight Control Alternatives: Conventional Balanced Actuation Fin, Flap, and Lattice Fin

51

Aerospace Design

Chapter 2: Aerodynamics

Lattice Fin Flight Control has Advantages for Low Subsonic and High Supersonic Missiles

Advantages ③

- High control effectiveness at low subsonic and high supersonic Mach number
- Low hinge moment
- Short chord length

Disadvantages 😕

- High radar cross section (cavities, normal leading edges)
- High drag at transonic Mach number (choked flow)
- High drag at low supersonic Mach number (shock wave – boundary layer interaction)
- Higher leading edge heat transfer at supersonic Mach number

Animation Video of Lattice Fin Flight Control

Lattice Fin Chicked Flow is Driven by Lattice Section Thickness and Transonic Mach Number

Note: A* = Flow area through inside cell for choked flow (local Mach number = 1), A = Cell outside area, γ = Specific heat ratio = 1.4, M_{critical} = Critical free stream Mach number for choked flow, t = Cell wall thickness, h = Cell height

Conventional Canard Flight Control is Efficient at Low Angle of Attack, but Stalls at High a with Induced Roll

Examples of Aerodynamic Approaches that Enhance Maneuverability and Accuracy of Canard Flight Control

AIM-9M: Rollerons (~ 30,000 rpm)

5/24/2022 Video of DAGR Free-to-Roll Tail Stabilizers)

Split Canard Flight Control → Maneuverability at High Angle of Attack with Lower Hinge Moment

Note: Forward fixed surface reduces local angle-of-attack for movable canard, providing lower hinge moment and higher stall angle of attack. Forward surface also provides a fixed, symmetrical location for vortex shedding from the body.

Python 4 also has free-to-roll tail stabilizers and dedicated roll control ailerons.

Aerospace Design

Chapter 2: Aerodynamics

Wing Flight Control Advantages: Low Body Rotation. Disadvantages: High Hinge Moment, Induced Roll, Stall

😕 Larger Variation in Static Margin

Aerospace Design

Chapter 2: Aerodynamics

Wings are Susceptible to Strong Vortex Shedding

Source: University of Notre Dame

Source: Nielsen Engineering & Research (NEAR)

60

Aerodynamic Flight Control Surfaces Stall at a Surface Local Angle of Attack $\alpha' \approx 22$ Deg

Aerospace Design

Chapter 2: Aerodynamics

Surface Maximum Lift (Stall) Decreases with Supersonic Mach Number

Note: Figure Based on

- Leading Edge Sweep $\Lambda_{\text{LE}} \le 45 \text{ deg} \Rightarrow \alpha'_{\text{stall}} \approx (\alpha + \delta)_{\text{stall}} \approx 22 \text{ deg}$
- Linear Wing Theory Plus Newtonian Impact Theory
- Surface Planform Reference Area.

62

TVC and Reaction Jet Flight Control Provide High Maneuverability at Low Dynamic Pressure

Chapter 2: Aerodynamics Most Missiles with TVC or Reaction Jet Flight Control Also Use Aerodynamic Flight Control

Aerospace Design

Chapter 2: Aerodynamics

Skid-to-Turn is the Most Common Maneuver Law for Missiles

Skid-To-Turn (STT)

- Advantage ⁽³⁾: Fast response
- Disadvantage (8): Usually limited to axisymmetric cruciform missiles with low aspect ratio
- · Feature:
 - Usually small roll attitude / rate commands from autopilot

Bank-To-Turn (BTT)

- Advantage ^(C): Higher maneuverability for mono-wing, noncircular / lifting bodies, and airbreathers
- Disadvantages (8):
 - Time to roll
 - Roll rate limited by gain for radome error slope stability
- Features

© R. M. Barrett, E. Fleeman 2023 All rights reserv

- Large roll attitude commands from autopilot
- Small sideslip

Note: LOS is line-of-sight

Aerospace Design

Chapter 2: Aerodynamics

Skid-to-Turn is the Most Common Maneuver Law for Missiles (cont)

Rolling Airframe (RA)

- Advantages ⁽³⁾:
 - Requires fewer gyros / accelerometers / actuators
 - Compatible with rosette scan / pseudo Image seeker
- Disadvantages (8):
 - Reduced maneuverability for aero control
 - Requires higher rate gyros / actuators / seeker tracking
 - Higher drag with coning flight trajectory
 - Requires precision geometry and thrust alignment
 - Induces radial stress
 - Thrust varies with roll rate
- Features
 - Bias roll rate (~10 Hz) from bias roll moment
 - Can use "bang-bang" / impulse steering
 - Compensates for thrust offset

Divert

- Advantages (2):
 - Lower time constant
 - Less effect of radome error slope
 - Often has smaller miss distance
- Disadvantages (8):
 - Usually higher cost
 - May not provide sufficient maneuverability
- Features
 - Direct lift / side force w/o rotation
 - Either wing, blended canard tail, or divert reaction jet control

Aerospace Design

Chapter 2: Aerodynamics Examples of Skid-to-Turn, Bank-to-Turn, Rolling Airframe, and Divert Maneuvering

Video of Sea Sparrow, JASSM, SeaRAM, and MKV Flight Trajectories

Non-Cruciform Inlets Require Bank-to-Turn Maneuvering

Type Inlet	Location	Propulsion	Example Missile
Twin	Side	Ramjet	ASMP
ø	"	"	C-101 C-301
u	"	Turbojet	Taurus KEPD-350
u	Cheek	Ducted Rocket	HSAD Meteor R
Single	Bottom Scoop	Scramjet	X-51 SED
ø	"	Ramjet	ASALM
Ð	u	Turbojet	Tomahawk RBS-15 SOM SOM

Note: Bank-to-turn maneuvering maintains low sideslip ($\beta \approx 0$ deg) with better inlet efficiency

Non-Cruciform Inlets Require Bank-to-Turn Maneuvering (cont)

Type Inlet	Location	Propulsion	Example Missile	
Single	Bottom Scoop (cont)	Turbojet	NSM TORGOS Ra'ad C	
"	"	"	Storm Shadow Sizzler	
			Delilah	
65	"		Hyunmoo III	
o	"	"	Babur I Sea Eagle	
u	Bottom Flush	"	JASSM Harpoon	
u	"	"	Gabriel 📼	
"	Тор	Turbofan		

Note: Bank-to-turn maneuvering maintains low sideslip ($\beta \approx 0$ deg) with better inlet efficiency

Typical Sign Convention for Cruciform Missile Roll Angle and Flight Control Surface Deflection

+ ϕ looking forward from base

Find Fin1 Fin2 Co Fin3 Fin2 Co Z

Fins 1 and 3 have trailing edge right for + deflection Fins 2 and 4 have trailing edge up for + deflection In above figure Fins 1 and 2 have + deflection

$$\begin{split} \delta_{e} &= \text{Equivalent elevator deflection (} + \delta_{e} \text{ produces + (up) pitching moment)} = [(\delta_{2} + \delta_{4})/2] \cos \varphi - [(\delta_{1} + \delta_{3})/2] \sin \varphi \\ \delta_{r} &= \text{Equivalent rudder deflection (} + \delta_{r} \text{ produces + (right) yawing moment)} = [(\delta_{2} + \delta_{4})/2] \sin \varphi + [(\delta_{1} + \delta_{3})/2] \cos \varphi \\ \delta_{a} &= \text{Equivalent aileron deflection (} + \delta_{a} \text{ produces + (clockwise) rolling moment)} = (\delta_{2} + \delta_{3} - \delta_{1} - \delta_{4})/4 \end{split}$$

Note: For minimum total fin deflection (\Rightarrow lowest total hinge moment, lowest drag, highest control effectiveness): $\delta_1 = \delta_r - \delta_a, \delta_2 = \delta_e + \delta_a, \delta_3 = \delta_r + \delta_a, \delta_4 = \delta_e - \delta_a$

Aerospace Design

Chapter 2: Aerodynamics

X Roll Orientation Flight is Usually Better Than + Roll Orientation Flight

+ Roll Orientation (φ = 0 deg), Cruciform Tail Control, Looking Forward from Base

Note: + roll orientation sometimes has lower trim drag and less static stability and control effectiveness in pitch and yaw. + roll often has statically unstable roll moment derivative ($C_{l_{\varphi}} > 0$) in supersonic flight.

X roll orientation usually has better launch platform compatibility, higher lift-to-drag ratio, higher static stability and control effectiveness in pitch and yaw. X roll often has statically unstable roll moment derivative ($C_{l\phi} > 0$) in subsonic flight.

71

Chapter 2: Aerodynamics Trimmed Normal Force is Defined at Zero Pitching Moment

Aerospace Design

Chapter 2: Aerodynamics Relaxed Static Stability Margin Allows Higher Trim Angle of Attack and Higher Normal Force

SM = Static Margin = Distance Between Aerodynamic Center and Center of Gravity (x_{AC} - x_{CG})

Chapter 2: Aerodynamics Relaxed Static Stability Margin Reduces Drag

Unclassified Rev. 22 August 2023

74

Aerospace Design

Chapter 2: Aerodynamics

Missile Static Margin is Driven by Tail Area and Static Margin Predicition Has Large Uncertainty

Chapter 2: Aerodynamics

Stability & Control Requires High Flight Control Effectiveness

Small Roll from $\delta_r \Rightarrow |C_{\delta_r} / C_{\delta_a}| < 0.3$

Small Roll from $\phi \Rightarrow |C_{l_{\phi}} / C_{l_{\delta_a}}| < 0.5$

Small Roll from $\beta \Rightarrow |C_{l_{\beta}}/C_{l_{\delta_a}}| < 0.3$

Small Yaw from $\delta_a \Rightarrow |C_{n\delta_a}/C_{n\delta_r}| < 0.2$

High Yaw Control ⇔ | C_{nδr} > C_{nβ} |

University of Kansas

Aerospace Design

Chapter 2: Aerodynamics Stabilty & Control Cross Coupling is a Concern for Lifting Bodies (S&C Cross Coupling Often > 30%)

M2-F2 Lifting Body

X-24B Lifting Body

Video of M2-F2 Lifting Body Flight Test