Thursday September 19 2023

Today's Schedule:

- Call Roll
- Service/Outreach Sign-Ups:

Mon. 10/23 Eisenhower Middle School, Abilene

Mon. 10/30 Wamego Middle School

Sat. 12/2 Flint Hills Discovery Center, Manhattan

Sat. 12/9 Flint Hills Discovery Center, Manhattan

? Farley Elementary visit to KU Campus

- Mid-Semester Jeopardy/Quiz Questionnaire
- Competitions
- Small Report 6

AEROSPAGE JEOPARDY!

KU Aerospace Design

Fall 2023 Outreach Activities Driver/Rider signups

	Mon.	Mon.	Sat.	Sat.			Mon.	Mon.	Sat.	Sat.
	10/23	10/30	12/2	12/9			10/23	10/30	12/2	12/9
Ativie,Joseph			х			Linthavong,Cherry			х	
Bailey,Lucy M						Lofland,Chris C	х	х		
Barland,Jack A	х		х			Marshall,Jeb O	х		х	х
Bonham,Maggie E		х				Mays,Benjamin S		х		
Braaten,Niels C		х				Mcmichael,Barrett			х	х
Caulfield,Camden Lee						Mcnulty,Jack B		х		
Coppens,Ryan						Mistretta, Anthony J		х		
Dargahi,Alex			х		İ	Olson,Kadin Lee	х		х	
Denault,Carson Robert		х				Platt,Charlie M		х		
Deng,Keyu			х			Poznanski,Joshua	х	х	х	х
Dillon,Peter						Reida,Reanne N			х	х
Dodge,Andrew						Reidy,Macoy M		х	х	
Dunlay,Joshua P	х				İ	Relan,Jennifer	х	х	х	х
Dutta,Sap						Richardson, Jake	х		х	х
Foster,Dean C	х		х	х		Russell,Lucas S	х		х	х
Gillies,Gunnar			х	х		Schneider,Cade W	х		х	х
Goudschaal-Frazier,Gracyn Jane						Shah,Dhairya	х	х		
Guzman, Jonathan Alan		х				Sullivan, Tim Michael				
Harder,Samuel A			х	х		Sutton, Joshua T				х
Heide,Rhett Gile	х		х			Svoboda,Benjamin C		х		
Horst,Evelyn			х			Thorson, Johnathan A		х		
Hunt,Wesley Afra	х					To,Hoang Minh			х	
Junnare,Nupoor	х	х				Torok, Jackson P				х
Keathley,Liliana Gabriel						Torres Leon, Hector	х		х	
King,Kathryn M						Waggoner,Alex				х
Kuligowski,Payton M			х	х		Wall,James Edgar			х	
Larsen, Isaac		х		х		Wegiel,Jeremy L				

KU Aerospace Design

Abilene Elementary School 10/23 Drivers & Riders

- Meet in W. Learned Lot ~ 1:20pm, Dr. B. cell: (785) 760-4614
- 721 stayers go to 1182 for fabrication
- Drive to Abilene, 1101 N Vine Abilene, KS 67410

	Driver	Rider
Barland, Jack A		
Braaten, Niels		У
Dunlay, Joshua P	у З	
Foster,Dean C	y 4	
Heide,Rhett Gile		
Hunt,Wesley Afra		У
Junnare, Nupoor		У
Lofland, Chris C		У
Marshall, Jeb O		У
Olson,Kadin Lee		У
Poznanski,Joshua		У
Relan,Jennifer	у З	
Richardson, Jake		
Russell,Lucas S		У
Schneider,Cade W		
Shah,Dhairya		
Torres Leon,Hector		

KU Aerospace Design

AE 521 Small Report 6 Required Contents

Due Monday October 23am to: kuaerodesign@gmail.com

Total Points: 50

Notes on Team Assignment:

Note that the work to be performed for this report is to be done by a team of students numbering up to 5 individuals.

 $AE521_Report6_TeamName.docx$

example: AE521_Report6_SkyHawks.docx

<u>Report Title:</u> AE 521 Report 6 Objective Function Development 1. Introduction:

Choose a competition design to analyze the rest of the semester and possibly in the Spring. Describe why your team likes this design better than the others. If you choose a design of your own construction, tell the reader why you want to work on this particular kind of aircraft.

2. Abbreviated Operating Statement (AOS)

Generate an AOS for your team's chosen design. Make it good and put some thought in it.

3. Concept of Operations (ConOps)

Generate a ConOps for your team's chosen design as was covered in class. Show all principal mission phases and interactions

4. Mission Specification

Generate a Mission Specification for your team's chosen design as was covered in class. Include all information in tabular form, taken straight from your chosen AIAA or VFS specification.

5. Mission Profile

Generate a Mission Profile for your team's chosen design as was covered in class. Make SURE to do it in 3 dimensions with a CAD ribbon as was covered.

6. Objective Function (OF)

Following all of the steps presented in class, generate an objective function for your aircraft design. Include all requirements and objectives as well as at least five ancillary objectives. Define all terms, requirements and objectives and present a final mathematical expression for the objective function and all of its components.

7. Summary and Recommendations

Configuration Sweep: Choosing the configuration that best suits the mission

From coming efforts, many configurations with pros and cons

 + Lower Interference Drag + Blown Flaps 	 Spar Discontinuity – Adds Weight Engine Accessibility Less Wing Fuel Volume No Room for Engine Growth 	Figure 6-3: Wing
Delta Wing		Podded Engines
 + Delayed Stall 	 Engine Accessibility 	
+ Transonic Performance	 Passenger Visibility Low High Landing Angle of Attack Low L/D "Are you trying to go to space?" – Dr. Willam Anemaat 	Figure 6-4: Delta W
Tandem Wing		
+ High AR	 Landing Gear Integration 	
+ Low Trim Drag	 Engine Placement Cabin Noise/Vibration Pitch Break Characteristics Certification Cost 	120
		Figure 6-5: Tande

Copyright © R.M. Barrett All rights reserved

Step 3: Objective Function

From coming efforts, many configurations with pros and cons

From coming efforts, many configurations with pros and cons

Use survey information, experience & market data to generate an Objective Function.

Concept 1: Requirements, R_i (i = 1...n)

A performance or physical characteristic below which and/or above which, the design will be considered nonviable.

Concept 2: Objectives, O_j (j = 1... m)

A performance or physical characteristic that is desirable to attain.

Step 3: Objective Function

Recall from Systems Engineering:

1. Mandatory requirements (Requirements) insure that the system satisfies the customer's operational need. Mandatory requirements (1) specify the necessary and sufficient conditions that a minimal system must have in order to be acceptable (2) must be passed or failed, there is no middle ground, and (3) must not be susceptible to trade-offs between requirements. Typical mandatory requirements might be of the following form: The system shall not violate federal, state or local laws. Mandatory requirements state the minimal requirements necessary to satisfy the customer's need.

2. Tradeable Requirements (Objectives) are evaluated to determine the preferred designs. Tradeoff requirements (1) should state conditions that would make the customer happier (2) should use scoring functions to evaluate the criteria, and (3) should be evaluated with multicriterion decision aiding techniques because there will be trade-offs between these requirements.

Sometimes there is a relationship between mandatory and tradeoff requirements, e.g. a mandatory requirement might be a lower threshold value for a tradeoff requirement. The words optimize, maximize, minimize and simultaneous should not be used in stating a hard and fast requirement.

Verify and validate requirements

Each requirement should be verified by logical argument, inspection, modeling, simulation, analysis, test or demonstration. Validating requirements means ensuring that

- 1) the recommended solution satisfies the actual needs of the customer
- 2) the description of the requirements is consist and complete
- 3) a system model can satisfy the requirements
- 4) a real-world solution can be tested to prove that it satisfies the requirements.

Requirements are often validated by reference to an existing system that meets most of the requirements.

Use survey information, experience & market data to generate Objective Function.

Concept 1: Requirement

A performance or physical characteristic below which and/or above which, the design will be considered nonviable.

Typical values: $R_1 = 0/1$, $R_2 = 0/1$, $R_3 = 0/1$

Example: Required Ferry Range: 1800nmi

Use survey information, experience & market data to generate Objective Function.

Concept 1: Requirement

A performance or physical characteristic below which and/or above which, the design will be considered nonviable.

Typical values: $R_1 = 0/1$, $R_2 = 0/1$, $R_3 = 0/1$

Example: Required Ferry Range: 1800nmi

Concept 2: Objective

A performance or physical characteristic that is desirable to attain, typically within given bounds.

Typical values: $O_1 = 50$ kts, $O_2 = 0.10$, $O_3 = 1500$ ft

Example: Objective Ferry Range: 2100nmi

Concept 3: Multiplicative Weighting

Typically done to provide a "switch" to null designs that can't meet threshold values

 $OF = R_1 R_2 R_3 R_4 R_5$

Concept 4 Additive Weighting

Typically done to assess objectives relative to each other

 $OF = O_1 + 3O_2 + 2O_3 + 10O_4 + 2O_5$

Concept 5 Exponentially Additive Weighting

Typically done to assess objectives relative to each other and more strongly weight high or low performance.

$$\boldsymbol{OF} = 2\boldsymbol{O}_1^2 + 5\boldsymbol{O}_2^{-1} + \boldsymbol{O}_3^1 - 3\boldsymbol{O}_4^2$$

Combined Objective Functions:

 $R_1 = \begin{cases} 1 & if \ V_{cr} \ge 250kts \\ 0 & if \ V_{cr} < 250kts \end{cases}$

$$O_{1} = \begin{cases} \frac{V_{cr} - 250kts}{100kts} & if \ 250kts < V_{cr} < 350kts \\ 1 & if \ V_{cr} > 350kts \end{cases}$$

Combined Objective Functions:Example $R_1 = \begin{cases} 1 & if \ V_{cr} \ge 250kts \\ 0 & if \ V_{cr} < 250kts \end{cases}$ $O_1 = \begin{cases} \frac{V_{cr} - 250kts}{100kts} & if \ 250kts < V_{cr} < 350kts \\ 1 & if \ V_{cr} > 350kts \end{cases}$

$$R_{2} = \begin{cases} 1 \ if \ W_{pl} \ge 1800 lbf \\ 0 \ if \ W_{pl} < 1800 lbf \end{cases} \qquad O_{2} = \begin{cases} \frac{W_{pl} - 1800 lbf}{1200 lbf} \ if \ 1800 lbf < W_{pl} < 3000 lbf \\ 1 \ if \ W_{pl} > 3000 lbf \end{cases}$$

16

 R_1

 R_2

 R_3

Step 3: Objective Function

Combined Objective Functions:

$$= \begin{cases} 1 & if \ V_{cr} \ge 250kts \\ 0 & if \ V_{cr} < 250kts \end{cases} \qquad O_1 = \begin{cases} \frac{V_{cr} - 250kts}{100kts} & if \ 250kts < V_{cr} < 350kts \\ 1 & if \ V_{cr} > 350kts \end{cases}$$
$$= \begin{cases} 1 & if \ W_{pl} \ge 1800lbf \\ 0 & if \ W_{pl} < 1800lbf \end{cases} \qquad O_2 = \begin{cases} \frac{W_{pl} - 1800lbf}{1200lbf} & if \ 1800lbf < W_{pl} < 3000lbf \\ 1 & if \ W_{pl} > 3000lbf \end{cases}$$
$$= \begin{cases} 1 & if \ BFL \le 2500ft \\ 0 & if \ BFL > 2500ft \end{cases} \qquad O_3 = \begin{cases} \frac{1000ft}{BFL - 1500ft} & if \ 1500ft < BFL < 2500ft \\ 1 & if \ BFL < 1500ft \end{cases}$$

Combined Objective Functions:

 $R_{1} = \begin{cases} 1 \ if \ V_{cr} \ge 250 kts \\ 0 \ if \ V_{cr} < 250 kts \end{cases} \qquad O_{1} = \begin{cases} \frac{V_{cr} - 250 kts}{100 kts} \ if \ 250 kts < V_{cr} < 350 kts \\ 1 \ if \ V_{cr} > 350 kts \end{cases}$ $R_{2} = \begin{cases} 1 \ if \ W_{pl} \ge 1800 lbf \\ 0 \ if \ W_{pl} < 1800 lbf \end{cases} \qquad O_{2} = \begin{cases} \frac{W_{pl} - 1800 lbf}{1200 lbf} \ if \ 1800 lbf < W_{pl} < 3000 lbf \\ 1 \ if \ W_{pl} > 3000 lbf \end{cases}$ $R_{3} = \begin{cases} 1 \ if \ BFL \le 2500 ft \\ 0 \ if \ BFL > 2500 ft \end{cases} \qquad O_{3} = \begin{cases} \frac{1000 ft}{BFL - 1500 ft} \ if \ 1500 ft < BFL < 2500 ft \\ 1 \ if \ BFL < 1500 ft \end{cases}$

 $R_2 = \langle$

 $R_3 =$

Step 3: Objective Function

Combined Objective Functions:

$$R_{1} = \begin{cases} 1 \ if \ V_{cr} \ge 250kts \\ 0 \ if \ V_{cr} < 250kts \end{cases} \qquad O_{1} = \begin{cases} \frac{V_{cr} - 250kts}{100kts} \ if \ 250kts < V_{cr} < 350kts \\ 1 \ if \ V_{cr} > 350kts \end{cases}$$

$$R_{2} = \begin{cases} 1 \ if \ W_{pl} \ge 1800lbf \\ 0 \ if \ W_{pl} < 1800lbf \end{cases} \qquad O_{2} = \begin{cases} \frac{W_{pl} - 1800lbf}{1200lbf} \ if \ 1800lbf < W_{pl} < 3000lbf \\ 1 \ if \ W_{pl} > 3000lbf \end{cases}$$

$$R_{3} = \begin{cases} 1 \ if \ BFL \le 2500ft \\ 0 \ if \ BFL > 2500ft \end{cases} \qquad O_{3} = \begin{cases} \frac{1000ft}{BFL - 1500ft} \ if \ 2000ft < BFL < 2500ft \\ 1 \ if \ BFL < 2000ft \end{cases}$$

Combined Objective Functions: Example

 $O_{1} = \begin{cases} \frac{V_{cr} - 250kts}{100kts} & \text{if } 250kts < V_{cr} < 350kts \\ 1 & \text{if } V_{cr} > 350kts \end{cases}$ $R_1 = \begin{cases} 1 & if \ V_{cr} \ge 250kts \\ 0 & if \ V_{cr} < 250kts \end{cases}$ $O_{2} = \begin{cases} \frac{W_{pl} - 1800lbf}{1200lbf} & if \ 1800lbf < W_{pl} < 3000lbf \\ & 1 \ if \ W_{pl} > 3000lbf \end{cases}$ $R_{2} = \begin{cases} 1 \ if \ W_{pl} \ge 1800 lbf \\ 0 \ if \ W_{pl} < 1800 lbf \end{cases}$ $O_{3} = \begin{cases} \frac{1000ft}{BFL - 1500ft} & if \ 2000ft < BFL < 2500ft \\ 1 & if \ BFL < 2000ft \end{cases}$ $O_{4} = \begin{cases} \frac{\$7.5M}{\$8.5M - Cacq} & if \ \$1M < Cacq < \$8.5M \\ 10 & if \ \$500k < C_{acq} < \$1M \\ 100 & if \ Cacq < \$500k \end{cases}$ $R_3 = \begin{cases} 1 & if BFL \le 2500ft \\ 0 & if BFL > 2500ft \end{cases}$ $R_4 = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases}$

Example

Step 3: Objective Function

Combined Objective Functions:

 $O_{1} = \begin{cases} \frac{V_{cr} - 250kts}{100kts} & \text{if } 250kts < V_{cr} < 350kts \\ 1 & \text{if } V_{cr} > 350kts \end{cases}$ $R_1 = \begin{cases} 1 & if \ V_{cr} \ge 250kts \\ 0 & if \ V_{cr} < 250kts \end{cases}$ $O_{2} = \begin{cases} \frac{W_{pl} - 1800lbf}{1200lbf} & if \ 1800lbf < W_{pl} < 3000lbf \\ & 1 \ if \ W_{pl} > 3000lbf \end{cases}$ $R_{2} = \begin{cases} 1 \ if \ W_{pl} \ge 1800 lbf \\ 0 \ if \ W_{pl} < 1800 lbf \end{cases}$ $O_{3} = \begin{cases} \frac{1000ft}{BFL - 1500ft} & if \ 2000ft < BFL < 2500ft \\ 1 & if \ BFL < 2000ft \\ \end{cases}$ $O_{4} = \begin{cases} \frac{\$7.5M}{\$8.5M - Cacq} & if \ \$1M < Cacq < \$8.5M \\ 10 & if \ \$500k < C_{acq} < \$1M \\ 100 & if \ Cacq < \$500k \end{cases}$ $R_3 = \begin{cases} 1 & if BFL \le 2500ft \\ 0 & if BFL > 2500ft \end{cases}$ $R_4 = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases}$ $O_{5} = \begin{cases} \left(\frac{P_{k} - 90\%}{10\%}\right)^{2} if \ 90\% < Pk < 100\% \\ 1 \ if Pk = 100\% \end{cases}$ $R_{5} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases}$

Combined Objective Functions: Example

$$R_{1} = \begin{cases} 1 \ if \ V_{cr} > 250kts \\ 0 \ if \ V_{cr} < 250kts \end{cases} R_{2} = \begin{cases} 1 \ if \ W_{pl} > 1800lbf \\ 0 \ if \ W_{pl} < 1800lbf \end{cases} R_{3} = \begin{cases} 1 \ if \ BFL < 2500ft \\ 0 \ if \ BFL > 2500ft \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \ge \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases}$$

$$O_{1} = \begin{cases} \frac{V_{cr} - 250kts}{100kts} & \text{if } 250kts < V_{cr} < 350kts \\ 1 & \text{if } V_{cr} > 350kts \end{cases} \qquad O_{2} = \begin{cases} \frac{W_{pl} - 1800lbf}{1200lbf} & \text{if } 1800lbf < W_{pl} < 3000lbf \\ 1 & \text{if } W_{pl} > 3000lbf \end{cases}$$
$$O_{3} = \begin{cases} \frac{1000ft}{BFL - 1500ft} & \text{if } 2000ft < BFL < 2500ft \\ 1 & \text{if } BFL < 2000ft \end{cases} \qquad O_{4} = \begin{cases} \frac{\$7.5M}{\$8.5M - Cacq} & \text{if } \$1M < Cacq < \$8.5M \\ 10 & \text{if } \$500k < C_{acq} < \$1M \\ 100 & \text{if } Cacq < \$500k \end{cases}$$

$$O_5 = \begin{cases} \left(\frac{P_k - 90\%}{10\%}\right)^2 & \text{if } 90\% < Pk < 100\% \\ 1 & \text{if } Pk = 100\% \end{cases}$$

Inclusion of overall design drivers like W_{TO} & DOC

$$OF = R_1 R_2 R_3 R_4 R_5 \frac{\left(5O_1^1 + O_2^3 + 2O_3^2 + 2O_4^{-2} + 2O_5^1\right)}{DOC * W_{to}}$$

Combined Objective Functions: Example

$$R_{1} = \begin{cases} 1 \ if \ V_{cr} > 250kts \\ 0 \ if \ V_{cr} < 250kts \end{cases} R_{2} = \begin{cases} 1 \ if \ W_{pl} > 1800lbf \\ 0 \ if \ W_{pl} < 1800lbf \end{cases} R_{3} = \begin{cases} 1 \ if \ BFL < 2500ft \\ 0 \ if \ BFL > 2500ft \end{cases} R_{4} = \begin{cases} 1 \ if \ Cacq \le \$8.5M \\ 0 \ if \ Cacq > \$8.5M \end{cases} = \begin{cases} 1 \ if \ Pk \ge 90\% \\ 0 \ if \ Pk < 90\% \end{cases}$$

$$O_{1} = \begin{cases} \frac{V_{cr} - 250kts}{100kts} & \text{if } 250kts < V_{cr} < 350kts \\ 1 & \text{if } V_{cr} > 350kts \end{cases} \qquad O_{2} = \begin{cases} \frac{W_{pl} - 1800lbf}{1200lbf} & \text{if } 1800lbf < W_{pl} < 3000lbf \\ 1 & \text{if } W_{pl} > 3000lbf \end{cases}$$

$$O_{3} = \begin{cases} \frac{1000ft}{BFL - 1500ft} & \text{if } 2000ft < BFL < 2500ft \\ 1 & \text{if } BFL < 2000ft \end{cases} \qquad O_{4} = \begin{cases} \frac{\$7.5M}{\$8.5M - Cacq} & \text{if } \$1M < Cacq < \$8.5M \\ 10 & \text{if } \$500k < C_{acq} < \$1M \\ 100 & \text{if } Cacq < \$500k \end{cases}$$

$$\left(\begin{pmatrix} P_{k} - 90\% \end{pmatrix}^{2} & \text{if } 00\% < Bk < 100\% \end{cases} \qquad DOC + 40 = DOC \end{cases} \qquad Wrather = Wrather = 0.5500 \end{cases}$$

$$O_{5} = \begin{cases} \left(\frac{P_{k} - 90\%}{10\%}\right)^{2} & if \ 90\% < Pk < 100\% \\ 1 & ifPk = 100\% \end{cases} \qquad O_{6} = \frac{DOC_{A-10} - DOC}{DOC_{A-10}} \qquad O_{7} = \frac{W_{TOA-10} - W_{TO}}{W_{TOA-10}} \end{cases}$$

 $OF = R_1 R_2 R_3 R_4 R_5 (5O_1 + O_2^3 + 2O_3^2 + 2O_4^{1.5} + 2O_5) O_6^1 \sqrt{O_7}$

Visualization of Multi-Point Aircraft Performance

Breguet Range

Step 3: Objective Function

Visualization of Multi-Point Aircraft Performance

Breguet Endurance

General Performance of Maritime Patrol Jet Market 2020 with 1.2*Endurance for Selected Aircraft

KU Aerospace Design

Step 3: Objective Function Visualization of Multi-Point Aircraft Performance

Breguet Range

Breguet Endurance

26

KU Aerospace Design

Step 3: Objective Function

Visualization of Multi-Point Aircraft Performance

Breguet Range

Breguet Endurance

Combined Objective Functions:

Apply OF to evaluate designs

$OF = R_1 R_2 R_3 R_4 R_5 (5O_1 + O_2^3 + 2O_3^2 + 2O_4^{1.5} + 2O_5) O_6^1 \sqrt{O_7}$

Wing Mounted Engines

- + Reduced Cabin Noise
- + Low CG excursion
- Co-Locate Landing Gear & Engine Pylon Structure
- + Reduced Risk of Engine FOD
- Engine Maintenance
 Engine Placement w/ respect
 - to Engine Non-Containment Event

Figure 6-14: Wing Mounted Engines

Three Surface

- + Co-Locate Wing Spar & Landing Gear Integration Rear Bulkhead - Not Widely Accepted
- Low Trim Drag
- Passenger Ground View
- High L/D

Figure 6-15: Three Surface

Combined Objective Functions:

Apply OF to evaluate designs

$OF = R_1 R_2 R_3 R_4 R_5 (5O_1 + O_2^3 + 2O_3^2 + 2O_4^{1.5} + 2O_5) O_6^1 \sqrt{O_7}$

Wing Mounted Engines

- + Reduced Cabin Noise
- + Low CG excursion

Three Surface

- + Co-Locate Landing Gear & Engine Pylon Structure
- + Reduced Risk of Engine FOD

+ Co-Locate Wing Spar &

Rear Bulkhead

Low Trim Drag Passenger Ground View

High L/D

- Engine Maintenance Engine Placement w/ respect
 - to Engine Non-Containment Event

OF = 3.62

Figure 6-14: Wing Mounted Engines

Figure 6-15: Three Surface

OF = 2.91

Combined Objective Functions:

Apply OF to evaluate designs

$\boldsymbol{OF} = R_1 R_2 R_3 R_4 R_5 \left(5\boldsymbol{O}_1 + \boldsymbol{O}_2^3 + 2\boldsymbol{O}_3^2 + 2\boldsymbol{O}_4^{1.5} + 2\boldsymbol{O}_5 \right) \boldsymbol{O}_6^1 \sqrt{\boldsymbol{O}_7}$

Wing Mounted Engines

- + Reduced Cabin Noise
- + Low CG excursion
- + Co-Locate Landing Gear & Engine Pylon Structure
- + Reduced Risk of Engine FOD
- Engine Maintenance Engine Placement w/ respect
 - to Engine Non-Containment Event

Figure 6-14: Wing Mounted Engines

Three Surface

- + Co-Locate Wing Spar & Landing Gear Integration Rear Bulkhead - Not Widely Accepted
- + Low Trim Drag
- Passenger Ground View
- High L/D

OF = 2.91

Figure 6-15: Three Surface

Design Characteristics List:

Certification Base: FAR-25

Entry into Service: EIS 2030 -100, EIS 2031 -200

Passengers: 30" pitch, 50 pax -100, 76 -200

Range: 2,000nmi -100, 1,500nmi -200

Cruise Mach: 0.78 (R), 0.80 (O)

Seat Width: 17.2" (R), 18" (O)

Wingspan: < 24m (O), < 36m (R)

Approach Speed: $V_A < 141$ kts

Takeoff Field Length: 5kft MSL, ISA+18, 4,000/50ft -100 6,000/50ft -200

Landing Field Length: 5kft MSL, ISA+18, 4,000/50ft -100 6,000/50ft -200

Crew: Pilot, Copilot, 1 F/A -100, 2 F/A's -200

Specified Design Objectives:

- 1. Maximize structural commonality between -100 & 200
- 2. Good aesthetics
- 3. Enhanced Reliability WRT SOTA
- 4. Reduced MRO load WRT SOTA
- 5. Minimize DOC
- 6. Minimize production costs

Step 3: Objective Function Objective Function with Anciliary Objectives:

Ancillary Design Considerations

- 1. Reduce total fuel burn to most efficient in class
- 2. Minimize Time on Ground per Turn
- 3. Under FAA 90 sec. Evacuation requirement
- 4. Rapid Cabin Sterilization
- 5. Exceed most stringent EASA noise regulations for RJ's
- 6. Special accommodations for business travelers
- 7. Allow pax to have ready access to all luggage without wait
- 8. Allow for growth of the physical dimensions of the traveling public
- 9. Operate from austere airports with neither jetways nor air-stairs
- 10. Allow for rapid powerplant inspection, LRU replacement, drop
- 11. Enable all normal ground operations with engines running
- 12. Minimal to no de-icing dispatch delays
- 13. Powerplants reachable without special equipment
- 14. Minimize number of engine start cycles per operational day
- 15. Allow for powerplant diameter growth with time without significant aircraft changes
- 16. ADA compliant cabin section, ingress and egress from ground w/o special equipment

 \mathbf{x}

33

Step 3: Objective Function

11 Requirements Weighting Functions from the Design Characteristics:

 $\begin{array}{l} R_1: \mbox{ Certification Base: FAR-25} \\ R_2: \mbox{ Entry into Service: ElS 2030 -100, ElS 2031 -200} \\ R_3: \mbox{ Passengers: 30" pitch, 50 pax -100, 76 -200} \\ R_4: \mbox{ Range: 2,000nmi -100, 1,500nmi -200} \\ R_5: \mbox{ Cruise Mach: \geq0.80} \\ R_6: \mbox{ Seat Width: \geq18"} \\ R_7: (Folded) \ Wingspan: \leq 24m \\ R_8: \mbox{ Approach Speed: V}_A < 141 \ kts \\ R_9: \ Takeoff \ Field \ Length: 5kft \ MSL, \ ISA+18, 4,000/50ft -100 \ 6,000/50ft -200 \\ R_{11}: \ Crew: \ Pilot, \ Copilot, 1 \ F/A -100, 2 \ F/A's -200 \\ \end{array}$

6 Objectives Weighting Functions from the Specified Design Objectives:

- O1: Maximize structural commonality between -100 & -200
- O₂: Good aesthetics
- O₃: Enhanced Reliability WRT SOTA
- O₄: Reduced MRO load WRT SOTA
- O₅: Minimize DOC
- O₆: Minimize production costs

16 Objectives Weighting Functions from Anciliary Objectives:

AO₁: Reduce total fuel burn to most efficient in class AO₂: Minimize Time on Ground per Turn AO₃: Under FAA 90 sec. Evacuation requirement AO₄: Rapid Cabin Sterilization AO₅: Exceed most stringent EASA noise regulations for RJ's AO₆: Special accommodations for business travelers AO₇: Allow pax to have ready access to all luggage without wait AO₈: Allow for growth of the physical dimensions of the traveling public AO₉: Operate from austere airports with neither jetways nor air-stairs AO₁₀: Allow for rapid powerplant inspection, LRU replacement, drop AO₁₁: Enable all normal ground operations with engines running AO₁₂: Minimal to no de-icing dispatch delays AO₁₃: Powerplants reachable without special equipment AO₁₄: Minimize number of engine start cycles per operational day AO₁₆: Allow for powerplant diameter growth with time without significant aircraft changes AO₁₆: ADA compliant cabin section, ingress and egress from ground without special equipment

11 Requirements Weighting Functions from the Design Characteristics:

- R₁: Certification Base: FAO-25
- R₂: Entry into Service: EIS 2030 -100, EIS 2031 -200
- R₃: Passengers: 30" pitch, 50 pax -100, 76 -200
- R₄: Range: 2,000nmi -100, 1,500nmi -200
- R₅: Cruise Mach: ≥0.80
- R₆: Seat Width: ≥18"
- R_7 :(Folded) Wingspan: $\leq 24m$
- R₈: Approach Speed: V_A < 141kts
- R₉: Takeoff Field Length: 5kft MSL, ISA+18, 4,000/50ft -100 6,000/50ft -200
- R₁₀: Landing Field Length: 5kft MSL, ISA+18, 4,000/50ft -100 6,000/50ft -200
- R₁₁: Crew: Pilot, Copilot, 1 F/A -100, 2 F/A's -200

6 Objectives Weighting Functions from the Specified Design Objectives:

- O1: Maximize structural commonality between -100 & -200
- O₂: Good aesthetics
- O₃: Enhanced Reliability WRT SOTA
- O₄: Reduced MRO load WRT SOTA
- O₅: Minimize DOC
- O₆: Minimize production costs

16 Objectives Weighting Functions from Anciliary Objectives:

AO₁: Reduce total fuel burn to most efficient in class
AO₂: Minimize Time on Ground per Turn
AO₃: Under FAA 90 sec. Evacuation requirement
AO₄: Rapid Cabin Sterilization
AO₅: Exceed most stringent EASA noise regulations for RJ's
AO₆: Special accommodations for business travelers
AO₇: Allow pax to have ready access to all luggage without wait
AO₈: Allow for growth of the physical dimensions of the traveling public
AO₉: Operate from austere airports with neither jetways nor air-stairs
AO₁₀: Allow for rapid powerplant inspection, LRU replacement, drop
AO₁₁: Enable all normal ground operations with engines running
AO₁₂: Minimal to no de-icing dispatch delays
AO₁₃: Powerplants reachable without special equipment
AO₁₄: Minimize number of engine start cycles per operational day
AO₁₅: Allow for powerplant diameter growth with time without significant aircraft changes

How to Handle Requirements Weighting Functions:

11 Requirements Weighting Functions from the Design Characteristics:

 $\begin{array}{l} R_1: \mbox{ Certification Base: FAO-25} \\ R_2: \mbox{ Entry into Service: ElS 2030 -100, ElS 2031 -200} \\ R_3: \mbox{ Passengers: 30" pitch, 50 pax -100, 76 -200} \\ R_4: \mbox{ Range: 2,000nmi -100, 1,500nmi -200} \\ R_5: \mbox{ Cruise Mach: $\ge 0.80} \\ R_6: \mbox{ Seat Width: $\ge 18"} \\ R_7: (Folded) \ Wingspan: $\le 24m \\ R_8: \mbox{ Approach Speed: V}_A < 141kts \\ R_9: \ Takeoff \ Field \ Length: 5kft \ MSL, \ ISA+18, 4,000/50ft -100 \ 6,000/50ft -200 \\ R_{10}: \ Landing \ Field \ Length: 5kft \ MSL, \ ISA+18, 4,000/50ft -100 \ 6,000/50ft -200 \\ R_{11}: \ Crew: \ Pilot, \ Copilot, 1 \ F/A -100, \ 2 \ F/A's -200 \\ \end{array}$

How to Handle Requirements Weighting Functions:

11 Requirements Weighting Functions from the Design Characteristics:

 $\begin{array}{l} {\sf R}_1: \mbox{Certification Base: FAO-25} \\ {\sf R}_2: \mbox{Entry into Service: EIS 2030 -100, EIS 2031 -200} \\ {\sf R}_3: \mbox{Passengers: 30" pitch, 50 pax -100, 76 -200} \\ {\sf R}_4: \mbox{Range: 2,000nmi -100, 1,500nmi -200} \\ {\sf R}_5: \mbox{Cruise Mach: $\ge 0.80} \\ {\sf R}_6: \mbox{Seat Width: $\ge 18"} \\ {\sf R}_7: (\mbox{Folded}) \ \mbox{Wingspan: $\le 24m} \\ {\sf R}_8: \mbox{Approach Speed: V}_A < 141 \mbox{kts} \\ {\sf R}_9: \ \mbox{Takeoff Field Length: 5kft MSL, ISA+18, 4,000/50 \mbox{ft -100 6,000/50 \mbox{ft -200}} \\ {\sf R}_{10}: \ \mbox{Landing Field Length: 5kft MSL, ISA+18, 4,000/50 \mbox{ft -100 6,000/50 \mbox{ft -200}} \\ {\sf R}_{11}: \ \mbox{Crew: Pilot, Copilot, 1 F/A -100, 2 F/A's -200} \end{array}$

How to Handle Specificed Objectives Weighting Functions:

6 Objectives Weighting Functions from the Specified Design Objectives:

O1: Maximize structural commonality between -100 & -200

O₂: Good aesthetics

- O₃: Enhanced Reliability WRT SOTA
- O₄: Reduced MRO load WRT SOTA
- O₅: Minimize DOC... Or is it Maximize DOP?
- O₆: Minimize production costs

Step 3: Objective Function

How to Handle Specificed Objectives Weighting Functions:

6 Objectives Weighting Functions from the Specified Design Objectives:

O1: Maximize structural commonality between -100 & -200

O₂: Good aesthetics

- O₃: Enhanced Reliability WRT SOTA
- O₄: Reduced MRO load WRT SOTA

O₅: Minimize DOC ... Or is it Maximize DOP?

O₆: Minimize production costs

Develop methods to weight each value from 0 to 1. If guidance is given on their relative importance with respect to each other, apply such weighting.

38

Recall...

Copyright © R.M. Barrett All rights reserved

KU Aerospace Design

Step 3: Objective Function

How to Handle Specificed Objectives Weighting Functions:

6 Objectives Weighting Functions from the Specified Design Objectives:

O1: Maximize structural commonality between -100 & -200

0 if no part by weight is common between the two, 1 if all parts can be made with the same tooling jigs, procedures and processes

 $O_1 = \left| \frac{\text{weight of items that use the same tooling, jigs and processes between the -100 and -200 aircraft}{W_{e-100} + W_{e-200}} \right|$

O₂: Good aesthetics

 $O_2 = 0$ if ranked the worst aircraft among surveyed candidates, 1 if best among candidates, rank ordered in between

O₃: Enhanced Reliability WRT SOTA

O₃ = 0 if < SOTA 99.7% Dispatch Reliability (Brooks, Robert, "Embraer Draws Regional Jet Order Worth Up to \$1 B,"

2014.)

 $O_3 = 333(DR - 0.997)$ if > SOTA 99.7% Dispatch Reliability

O₄: Reduced MRO load WRT SOTA

O₄ = 0 if T₀ < 18,000hrs (14,400cycles) MTBO (GE Aviation, "CF34-10E Engines Outperforming Expectations," May 2014, https://www.aerocontact.com/en/virtual-aviation-exhibition/product/545-cf34-8e-ge-aviation, 1.25 flt

hrs/cycle)

$$O_4 = \frac{T_0}{42,000} - \frac{3}{7}$$
 if T₀ > 18,000hrs MTBO (considering maximum airframe life of 60,00)

Reported Operating Cost and Utilization of Regional Aircraft rop/Regional Jet Costs and Operations - 12 Months Ended September 2014

\$1350

\$525

\$409

Turboprops

Insur.

Other

Cost Per Block Hour

\$1137

SH2

SARB.

Small RIs

AC Cost

\$1361

8422

Large RJs

Crew

Fuel

1000 Per

1500

 O_6 : Minimize production costs, $C_{pro} \propto C_{acg} \propto W_{TO}$ $O_6 = 0 \text{ if } W_{TO} > W_{TOref}$ $O_6 = 4 \frac{W_{TOref} - W_{TO}}{W_{TOref}} \text{ if } W_{TO} < W_{TOref}$

 $O_5 = 4 \frac{\$1,361 - DOC}{\$1,361}$ if DOC < 1,361

O₅: Minimize DOC ... Or is it Maximize DOP?

How to Handle Anciliary Objectives Weighting Functions:

16 Objectives Weighting Functions from Anciliary Objectives:

- AO1: Reduce total fuel burn to most efficient in class
- AO₂: Minimize Time on Ground per Turn
- AO₃: Under FAA 90 sec. Evacuation requirement
- AO₄: Rapid Cabin Sterilization
- AO₅: Exceed most stringent EASA noise regulations for RJ's
- AO₆: Special accommodations for business travelers
- AO₇: Allow pax to have ready access to all luggage without wait
- AO₈: Allow for growth of the physical dimensions of the traveling public
- AO_9 : Operate from austere airports with neither jetways nor air-stairs
- AO_{10} : Allow for rapid powerplant inspection, LRU replacement, drop
- AO_{11} : Enable all normal ground operations with engines running
- AO₁₂: Minimal to no de-icing dispatch delays
- AO₁₃: Powerplants reachable without special equipment
- AO₁₄: Minimize number of engine start cycles per operational day
- AO₁₅: Allow for powerplant diameter growth with time without significant aircraft changes
- AO₁₆: ADA compliant cabin section, ingress and egress from ground without special equipment

Develop methods to weight each value from 0 to 1. If guidance is given on their relative importance with respect to each other, apply such weighting.

How to Handle Anciliary Objectives Weighting Functions:

	Configuration 1	Configuration 2	Configuration 3
	Scores	Scores	Scores
O ₁ : Maximize structural commonality between -100 & -200	1	1	0.9
O ₂ : Good aesthetics	0.9	0.8	0.6
O ₃ : Enhanced Reliability WRT SOTA	0	0	0
O ₄ : Reduced MRO load WRT SOTA	0.5	0.4	0.4
O ₅ : Minimize DOC	0.1	0.05	0.05
O ₆ : Minimize production costs	0.1	0.1	0.05
Sum:	2.6	2.35	2
Weighted Sum (ROWF = 2):	0.87	0.78	0.67
AO ₁ : Reduce total fuel burn to most efficient in class	1	0	0
AO ₂ : Minimize Time on Ground per Turn	1	0	0
AO ₃ : Under FAA 90 sec. Evacuation requirement	1	1	1
AO4: Rapid Cabin Sterilization	1	1	1
AO ₅ : Exceed most stringent EASA noise regulations for RJ's	1	1	0
AO ₆ : Special accommodations for business travelers	1	1	1
AO ₇ : Allow pax to have ready access to all luggage without wait	1	1	1
AO_8 : Allow for growth of the physical dimensions of the traveling public	1	1	1
AO ₉ : Operate from austere airports with neither jetways nor air-stairs	1	1	1
AO ₁₀ : Allow for rapid powerplant inspection, LRU replacement, drop	1	1	1
AO ₁₁ : Enable all normal ground operations with engines running	1	1	1
AO ₁₂ : Minimal to no de-icing dispatch delays	1	1	1
AO ₁₃ : Powerplants reachable without special equipment	1	1	1
AO ₁₄ : Minimize number of engine start cycles per operational day	1	1	1
AO ₁₅ : Allow for powerplant diameter growth with time without significant aircraft changes	1	1	1
AO ₁₆ : ADA compliant cabin section, ingress and egress from ground without special			
equipment	1	1	1
Sum:	16	14	13
Weighted Sum:	1	0.875	0.8125
Total Score:	1.87	1.66	1.48

Total Score:

1.87

Step 3: Objective Function

Objective Function with Financial Analysis:

Example Weighting Exercise:

Life Cycle Profit = Life Cycle Earnings – Life Cycle Costs

KU Aerospace Design Kansas University **Step 3: Objective Function Objective Function with Financial Analysis:** Product life cycle **Annual Contribution to Life Cycle Disposal** Costs **RDT&E Operations** Acquisition Program **EIS Program** Product Life, t (yrs)

Report II

Initiation

Copyright © R.M. Barrett All rights reserved

End

Copyright © R.M. Barrett All rights reserved

KU Aerospace Design

Step 3: Objective Function

Step 3: Objective Function Objective Function with Financial Analysis:

Example Weighting Exercise -- airliners

1. Examine the many cost categories for that product

Component	Build Up
Salaries	Management Salaries, Flight Personnel Salaries, Maintenance Salaries, Aircraft and Traffic Handling Salaries, Other Salaries
Total Fringe Benefits	Personnel Expenses, Employee Benefits and Pensions, Payroll Taxes
Fuel and Oil	Fuel and Oil
Materials	Maintenance Materials, Passenger Food, Other Materials
Total Services	Advertising, Communication, Insurance, Outside Flight Equipment Maintenance, Passenger Traffic Commissions, Cargo Traffic Commissions, Other Services
Landing Fees	Landing Fees
Rentals	Rentals
Depreciation	Depreciation
Amortization	Amortization
Other	Other
Transportation Related Expenses	Transportation Related Expenses (AOG spares, shipping components, weather delay fees, passenger accommodations)

KU Aerospace Design

Step 3: Objective Function

Objective Function with Financial Analysis:

Example Weighting Exercise -- airliners

Determine the statistical distributions of the affected cost components

KU Aerospace Design

Step 3: Objective Function Objective Function with Financial Analysis:

49

Objective Function with Financial Analysis:

Get statistical distributions of each cost component and track with time

Step 3: Objective Function

Objective Function with Financial Analysis:

Example Weighting Exercise -- airliners

Estimate % of DOC for each category over expected lifetime:

$$OF = R_1 R_2 R_3 R_4 R_5 \begin{pmatrix} 0.26O_{1sal} + 0.04O_{2frn} + 0.18O_{3fuel} + 0.11O_{4mat} + 0.11O_{4mat} + 0.08O_{5svc} + \\ + 0.03O_{6lfees} + 0.05O_{7rent} + 0.09O_{8dep} + 0.03O_{9amr} + 0.06O_{10otr} + 0.07O_{11Xprt} \end{pmatrix}$$

Component	Build Up
O1 = Salaries (26%)	Management Salaries, Flight Personnel Salaries, Maintenance Salaries, Aircraft and Traffic Handling Salaries, Other Salaries
O2 = Total Fringe Benefits (4%)	Personnel Expenses, Employee Benefits and Pensions, Payroll Taxes
O3 = Fuel and Oil (18%)	Fuel and Oil
O4 = Materials (11%)	Maintenance Materials, Passenger Food, Other Materials
O5 = Total Services (8%)	Advertising, Communication, Insurance, Outside Flight Equipment Maintenance,
	Passenger Traffic Commissions, Cargo Traffic Commissions, Other Services
O6 = Landing Fees (3%)	Landing Fees
O7 = Rentals (5%)	Rentals
O8 = Depreciation (9%)	Depreciation
O9 = Amortization (3%)	Amortization
O10 = Other (6%)	Other
O11 = Transportation Related Expenses	Transportation Related Expenses (AOG spares, shipping components, weather
(7%)	delay fees, passenger accommodations)

Copyright © R.M. Barrett All rights reserved